Attractor Manipulation in Denoising Autoencoders for Robust Phone Recognition

Shaghayegh Reza, S. Seyyedsalehi, Seyyede Zohreh Seyyedsalehi
{"title":"Attractor Manipulation in Denoising Autoencoders for Robust Phone Recognition","authors":"Shaghayegh Reza, S. Seyyedsalehi, Seyyede Zohreh Seyyedsalehi","doi":"10.1109/ICEE52715.2021.9543707","DOIUrl":null,"url":null,"abstract":"Autoencoder Neural Networks can filter unwanted variabilities; however, their performance will degrade if their attractors and their basins of attraction are not correctly adjusted. This paper proposes a heuristic method to increase attractors shaped in desired points and expand their basins of attraction. These well-formed attractors can compensate variabilities and hence increase the chance of robust recognition. This method's effectiveness is shown on synthetic data and is compared with another attractor manipulation method called the cyclic method. This method's performance on the phone recognition task has shown 22.1 percent relative increase in the number of attractors and 4.2 percent relative improvement in the phone error rate on the Farsdat database.","PeriodicalId":254932,"journal":{"name":"2021 29th Iranian Conference on Electrical Engineering (ICEE)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 29th Iranian Conference on Electrical Engineering (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE52715.2021.9543707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Autoencoder Neural Networks can filter unwanted variabilities; however, their performance will degrade if their attractors and their basins of attraction are not correctly adjusted. This paper proposes a heuristic method to increase attractors shaped in desired points and expand their basins of attraction. These well-formed attractors can compensate variabilities and hence increase the chance of robust recognition. This method's effectiveness is shown on synthetic data and is compared with another attractor manipulation method called the cyclic method. This method's performance on the phone recognition task has shown 22.1 percent relative increase in the number of attractors and 4.2 percent relative improvement in the phone error rate on the Farsdat database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鲁棒手机识别降噪自编码器中的吸引子操作
自编码器神经网络可以过滤不需要的变量;但是,如果不正确调整吸引子和吸引盆,它们的性能就会下降。本文提出了一种启发式方法来增加在期望点上形成的吸引子,并扩大它们的吸引盆地。这些形式良好的吸引子可以补偿变量,从而增加鲁棒识别的机会。在合成数据上证明了该方法的有效性,并与另一种称为循环法的吸引子操作方法进行了比较。该方法在手机识别任务上的表现表明,在Farsdat数据库上,吸引子的数量相对增加了22.1%,手机错误率相对提高了4.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Model for Backcasting the Environmental Sustainability in Iran's Electricity Supply Mix Multi WGAN-GP loss for pathological stain transformation using GAN Bit Error Rate Improvement in Optical Camera Communication Based on RGB LED Robust IDA-PBC for a Spatial Underactuated Cable Driven Robot with Bounded Inputs Switched Robust Model Predictive Based Controller for UAV Swarm System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1