Measurement and estimation of electric field emission of a vacuum cleaner

A. Alkahtani, F. H. Nordin, Z. Sharrif
{"title":"Measurement and estimation of electric field emission of a vacuum cleaner","authors":"A. Alkahtani, F. H. Nordin, Z. Sharrif","doi":"10.1109/ICCSCE.2013.6719982","DOIUrl":null,"url":null,"abstract":"Electric field emission of electrical appliances has become an important problem, especially when testing for safety and compliance with regulations of electromagnetic compatibility (EMC). To confirm the safety and compliance of an electrical appliance, it is important to measure the levels of the emitted electric and magnetic fields from this appliance and compare them to the exposure limit values set by the international standards. Moreover, modeling these emitted fields can aid understanding their characteristics and ease investigating how different systems react to such emission. However, a good model depends mainly on the accuracy and robustness of the measurement methodology. Hence, the aim of this paper is to present a measurement methodology and a frequency domain model for the emitted electric field of vacuum cleaners using system identification tools. The proposed model is a data-driven model where the recorded signal is used to construct the model using polynomial model estimation methods. Measurement setup, related work and the model equation are presented accordingly.","PeriodicalId":319285,"journal":{"name":"2013 IEEE International Conference on Control System, Computing and Engineering","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Control System, Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2013.6719982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electric field emission of electrical appliances has become an important problem, especially when testing for safety and compliance with regulations of electromagnetic compatibility (EMC). To confirm the safety and compliance of an electrical appliance, it is important to measure the levels of the emitted electric and magnetic fields from this appliance and compare them to the exposure limit values set by the international standards. Moreover, modeling these emitted fields can aid understanding their characteristics and ease investigating how different systems react to such emission. However, a good model depends mainly on the accuracy and robustness of the measurement methodology. Hence, the aim of this paper is to present a measurement methodology and a frequency domain model for the emitted electric field of vacuum cleaners using system identification tools. The proposed model is a data-driven model where the recorded signal is used to construct the model using polynomial model estimation methods. Measurement setup, related work and the model equation are presented accordingly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真空吸尘器电场发射的测量与估计
电器的电场发射已经成为一个重要的问题,特别是在进行安全测试和电磁兼容测试时。为了确认电器的安全性和合规性,测量该电器发出的电场和磁场水平,并将其与国际标准规定的暴露极限值进行比较是很重要的。此外,对这些发射场进行建模可以帮助理解它们的特性,并有助于研究不同系统对这种发射的反应。然而,一个好的模型主要取决于测量方法的准确性和稳健性。因此,本文的目的是利用系统识别工具提出一种测量方法和真空吸尘器发射电场的频域模型。所提出的模型是一个数据驱动的模型,其中记录的信号使用多项式模型估计方法来构建模型。给出了测量方法、相关工作和模型方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Digital aerial imagery of unmanned aerial vehicle for various applications Performance study of preliminary mini anechoic chamber fitted with coconut shell coated absorbers A new approach for the design of relay control circuits Design of ultra wideband rectangular microstrip notched patch antenna Delay compensation using PID controller and GA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1