{"title":"Local Differentially Private Matrix Factorization For Recommendations","authors":"N. Jeyamohan, Xiaomin Chen, N. Aslam","doi":"10.1109/SKIMA47702.2019.8982536","DOIUrl":null,"url":null,"abstract":"In recent years recommendation systems have become popular in the e-commerce industry as they can be used to provide a personalized experience to users. However, performing analytics on users’ information has also raised privacy concerns. Various privacy protection mechanisms have been proposed for recommendation systems against user-side adversaries. However most of them disregards the privacy violations caused by the service providers. In this paper, we propose a local differential privacy mechanism for matrix factorization based recommendation systems. In our mechanism, users perturb their ratings locally on their devices using Laplace and randomized response mechanisms and send the perturbed ratings to the service provider. We evaluate the proposed mechanism using Movielens dataset and demonstrate that it can achieve a satisfactory tradeoff between data utility and user privacy.","PeriodicalId":245523,"journal":{"name":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA47702.2019.8982536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In recent years recommendation systems have become popular in the e-commerce industry as they can be used to provide a personalized experience to users. However, performing analytics on users’ information has also raised privacy concerns. Various privacy protection mechanisms have been proposed for recommendation systems against user-side adversaries. However most of them disregards the privacy violations caused by the service providers. In this paper, we propose a local differential privacy mechanism for matrix factorization based recommendation systems. In our mechanism, users perturb their ratings locally on their devices using Laplace and randomized response mechanisms and send the perturbed ratings to the service provider. We evaluate the proposed mechanism using Movielens dataset and demonstrate that it can achieve a satisfactory tradeoff between data utility and user privacy.