Medical image fusion based on joint sparse method

Anuyogam Venkataraman, J. Alirezaie, P. Babyn, A. Ahmadian
{"title":"Medical image fusion based on joint sparse method","authors":"Anuyogam Venkataraman, J. Alirezaie, P. Babyn, A. Ahmadian","doi":"10.1109/MECBME.2014.6783216","DOIUrl":null,"url":null,"abstract":"In this paper, a novel joint image fusion algorithm which is the hybrid of Orthogonal Matching Pursuit (OMP) and Principal Component Analysis (PCA) is proposed to properly utilize the advantages and to overcome the disadvantages of both OMP and PCA methods. Firstly, common and innovative images are extracted from the source images. Secondly, sparse PCA method is employed to fuse the information of innovative features. Then weighted average fusion is used to fuse the sparse PCA result with the common feature thereby preserving the edge information and high spatial resolution. We demonstrate this methodology on medical images from different sources and the experimental results proves the robustness of the proposed method.","PeriodicalId":384055,"journal":{"name":"2nd Middle East Conference on Biomedical Engineering","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd Middle East Conference on Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECBME.2014.6783216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a novel joint image fusion algorithm which is the hybrid of Orthogonal Matching Pursuit (OMP) and Principal Component Analysis (PCA) is proposed to properly utilize the advantages and to overcome the disadvantages of both OMP and PCA methods. Firstly, common and innovative images are extracted from the source images. Secondly, sparse PCA method is employed to fuse the information of innovative features. Then weighted average fusion is used to fuse the sparse PCA result with the common feature thereby preserving the edge information and high spatial resolution. We demonstrate this methodology on medical images from different sources and the experimental results proves the robustness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于联合稀疏方法的医学图像融合
本文提出了一种将正交匹配追踪(OMP)和主成分分析(PCA)相结合的联合图像融合算法,以充分利用正交匹配追踪(OMP)和主成分分析(PCA)方法的优点,克服两者的缺点。首先,从源图像中提取常见图像和创新图像;其次,采用稀疏PCA方法融合创新特征信息;然后利用加权平均融合将稀疏PCA结果与共同特征融合,从而保持边缘信息和高空间分辨率。我们将该方法应用于不同来源的医学图像,实验结果证明了该方法的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human microRNAs targeting hepatitis C virus ECG noise reduction using empirical mode decomposition based on combination of instantaneous half period and soft-thresholding MFC peak based segmentation for continuous Arabic audio signal A model for ultrasound contrast agent in a phantom vessel Performance of Optical Flow tracking approaches for cardiac motion analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1