Facilitating Multi-turn Emotional Support Conversation with Positive Emotion Elicitation: A Reinforcement Learning Approach

Jinfeng Zhou, Zhuang Chen, Bo Wang, Minlie Huang
{"title":"Facilitating Multi-turn Emotional Support Conversation with Positive Emotion Elicitation: A Reinforcement Learning Approach","authors":"Jinfeng Zhou, Zhuang Chen, Bo Wang, Minlie Huang","doi":"10.48550/arXiv.2307.07994","DOIUrl":null,"url":null,"abstract":"Emotional support conversation (ESC) aims to provide emotional support (ES) to improve one’s mental state. Existing works stay at fitting grounded responses and responding strategies (e.g., question), which ignore the effect on ES and lack explicit goals to guide emotional positive transition. To this end, we introduce a new paradigm to formalize multi-turn ESC as a process of positive emotion elicitation. Addressing this task requires finely adjusting the elicitation intensity in ES as the conversation progresses while maintaining conversational goals like coherence. In this paper, we propose Supporter, a mixture-of-expert-based reinforcement learning model, and well design ES and dialogue coherence rewards to guide policy’s learning for responding. Experiments verify the superiority of Supporter in achieving positive emotion elicitation during responding while maintaining conversational goals including coherence.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.07994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Emotional support conversation (ESC) aims to provide emotional support (ES) to improve one’s mental state. Existing works stay at fitting grounded responses and responding strategies (e.g., question), which ignore the effect on ES and lack explicit goals to guide emotional positive transition. To this end, we introduce a new paradigm to formalize multi-turn ESC as a process of positive emotion elicitation. Addressing this task requires finely adjusting the elicitation intensity in ES as the conversation progresses while maintaining conversational goals like coherence. In this paper, we propose Supporter, a mixture-of-expert-based reinforcement learning model, and well design ES and dialogue coherence rewards to guide policy’s learning for responding. Experiments verify the superiority of Supporter in achieving positive emotion elicitation during responding while maintaining conversational goals including coherence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
积极情绪激发促进多回合情绪支持对话:强化学习方法
情感支持会话(ESC)旨在提供情感支持来改善一个人的精神状态。现有的研究停留在拟合基础反应和应对策略(如问题)上,忽视了对情绪反应的影响,缺乏明确的目标来引导情绪的积极转变。为此,我们引入了一个新的范式,将多回合ESC形式化为一个积极情绪激发的过程。要完成这一任务,需要在保持连贯等会话目标的同时,随着对话的进行,精细地调整ES中的引出强度。在本文中,我们提出了一个基于混合专家的强化学习模型,并设计了ES和对话一致性奖励来指导政策的响应学习。实验验证了支持者在保持会话目标(包括连贯)的同时,在回应过程中实现积极情绪激发方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Document-level Event Argument Extraction with Contextual Clues and Role Relevance How-to Guides for Specific Audiences: A Corpus and Initial Findings Substitution-based Semantic Change Detection using Contextual Embeddings MultiCapCLIP: Auto-Encoding Prompts for Zero-Shot Multilingual Visual Captioning DaMSTF: Domain Adversarial Learning Enhanced Meta Self-Training for Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1