Landmark analysis of leaf shape using dynamic threshold polygonal approximation

W. W. Kalengkongan, B. P. Silalahi, Y. Herdiyeni, S. Douady
{"title":"Landmark analysis of leaf shape using dynamic threshold polygonal approximation","authors":"W. W. Kalengkongan, B. P. Silalahi, Y. Herdiyeni, S. Douady","doi":"10.1109/ICACSIS.2015.7415156","DOIUrl":null,"url":null,"abstract":"This research proposes a method to extract landmark of leaf shape using dynamic threshold polygonal approximation. Landmark-based shape analysis is the core of geometric morphometric and has been used as a quantitative tool in evolutionary and developmental biology. Also, this analysis has been used by botanist and taxonomist to discriminate species. In this research, the polygonal approximation is used to select the best points that can represent the leaf shape variability. We used a dynamic threshold as the control parameter of fitting a series of line segment over a digital curve of leaf shape. This research focuses on seven leaf shape, i.e., cordate, eliptic, lanceolate, obovate, obriculate, ovate and reniform. Experimental results show dynamic polygonal approximation shows can be used to find the important points of leaf shape. This research is promising for discriminating species of plants.","PeriodicalId":325539,"journal":{"name":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2015.7415156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This research proposes a method to extract landmark of leaf shape using dynamic threshold polygonal approximation. Landmark-based shape analysis is the core of geometric morphometric and has been used as a quantitative tool in evolutionary and developmental biology. Also, this analysis has been used by botanist and taxonomist to discriminate species. In this research, the polygonal approximation is used to select the best points that can represent the leaf shape variability. We used a dynamic threshold as the control parameter of fitting a series of line segment over a digital curve of leaf shape. This research focuses on seven leaf shape, i.e., cordate, eliptic, lanceolate, obovate, obriculate, ovate and reniform. Experimental results show dynamic polygonal approximation shows can be used to find the important points of leaf shape. This research is promising for discriminating species of plants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态阈值多边形逼近的叶片形状特征分析
提出了一种基于动态阈值多边形逼近的叶片形状特征提取方法。基于地标的形状分析是几何形态计量学的核心,已被用作进化和发育生物学的定量工具。此外,该分析还被植物学家和分类学家用于物种鉴别。在本研究中,采用多边形近似法选择最能代表叶片形状变异的点。我们使用动态阈值作为控制参数,在叶片形状的数字曲线上拟合一系列线段。本研究以心形、椭圆形、披针形、倒卵形、倒柔形、卵形和肾形七种叶形为重点。实验结果表明,动态多边形近似法可以找到叶片形状的关键点。这项研究对植物种类的鉴别具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An automatic health surveillance chart interpretation system based on Indonesian language Road detection system based on RGB histogram filterization and boundary classifier Developing smart telehealth system in Indonesia: Progress and challenge Evolutionary segment selection for higher-order conditional random fields in semantic image segmentation Enhancing efficiency of enterprise digital rights management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1