Multi-objective evolutionary generation of Mamdani fuzzy rule-based systems based on rule and condition selection

M. Antonelli, P. Ducange, B. Lazzerini, F. Marcelloni
{"title":"Multi-objective evolutionary generation of Mamdani fuzzy rule-based systems based on rule and condition selection","authors":"M. Antonelli, P. Ducange, B. Lazzerini, F. Marcelloni","doi":"10.1109/GEFS.2011.5949489","DOIUrl":null,"url":null,"abstract":"In the framework of multi-objective evolutionary fuzzy systems applied to regression problems, we propose to concurrently exploit a two-level rule selection (2LRS) and an appropriate learning of the membership function (MF) parameters to generate a set of Mamdani fuzzy rule-based systems with different trade-offs between accuracy and RB complexity. The 2LRS aims to select a reduced number of rules from a previously generated rule base and a reduced number of conditions for each selected rule. The learning adapts the cores of the MFs maintaining the partitions strong. The proposed approach has been experimented on two real world regression problems and the results have been compared with those obtained by applying the same multi-objective evolutionary algorithm for learning concurrently rules and MF parameters. We show that our approach achieves the best trade-offs between interpretability and accuracy.","PeriodicalId":120918,"journal":{"name":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","volume":"14 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 5th International Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GEFS.2011.5949489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the framework of multi-objective evolutionary fuzzy systems applied to regression problems, we propose to concurrently exploit a two-level rule selection (2LRS) and an appropriate learning of the membership function (MF) parameters to generate a set of Mamdani fuzzy rule-based systems with different trade-offs between accuracy and RB complexity. The 2LRS aims to select a reduced number of rules from a previously generated rule base and a reduced number of conditions for each selected rule. The learning adapts the cores of the MFs maintaining the partitions strong. The proposed approach has been experimented on two real world regression problems and the results have been compared with those obtained by applying the same multi-objective evolutionary algorithm for learning concurrently rules and MF parameters. We show that our approach achieves the best trade-offs between interpretability and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于规则和条件选择的Mamdani模糊规则系统多目标进化生成
在应用于回归问题的多目标进化模糊系统框架中,我们提出同时利用两级规则选择(2LRS)和适当的隶属函数(MF)参数学习来生成一组在准确性和RB复杂性之间具有不同权衡的基于Mamdani模糊规则的系统。2LRS旨在从先前生成的规则库中选择数量减少的规则,并为每个所选规则选择数量减少的条件。学习适应MFs的核心,保持分区的强度。该方法已在两个现实世界的回归问题上进行了实验,并与使用相同的多目标进化算法学习并发规则和MF参数的结果进行了比较。我们表明,我们的方法在可解释性和准确性之间取得了最好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copyright page A fuzzy genetic system for segmentation of on-line handwriting: Application to ADAB database Body posture recognition by means of a genetic fuzzy finite state machine KASIA approach vs. Differential Evolution in Fuzzy Rule-Based meta-schedulers for Grid computing Implementation of Fuzzy NARX IMC PID control of PAM robot arm using Modified Genetic Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1