A note on constrained multi-objective optimization benchmark problems

Ryoji Tanabe, A. Oyama
{"title":"A note on constrained multi-objective optimization benchmark problems","authors":"Ryoji Tanabe, A. Oyama","doi":"10.1109/CEC.2017.7969433","DOIUrl":null,"url":null,"abstract":"We investigate the properties of widely used constrained multi-objective optimization benchmark problems. A number of Multi-Objective Evolutionary Algorithms (MOEAs) for Constrained Multi-Objective Optimization Problems (CMOPs) have been proposed in the past few years. The C-DTLZ functions and Real-World-Like Problems (RWLPs) have frequently been used for evaluating the performance of MOEAs on CMOPs. In this paper, however, we show that the C-DTLZ functions and widely-used RWLPs have some unnatural problem features. The experimental results show that an MOEA without any Constraint Handling Techniques (CHTs) can successfully find well-approximated nondominated feasible solutions on the C1-DTLZ1, C1-DTLZ3, and C2-DTLZ2 functions. It is widely believed that RWLPs are MOEA-hard problems, and finding the feasible solutions on them is a very hard task. However, we show that the MOEA without any CHTs can find feasible solutions on widely-used RWLPs such as the speed reducer design problem, the two-bar truss design problem, and the water problem. Also, it is seldom that the infeasible solution simultaneously violates multiple constraints in the RWLPs. Due to the above reasons, we conclude that constrained multi-objective optimization benchmark problems need a careful reconsideration.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

We investigate the properties of widely used constrained multi-objective optimization benchmark problems. A number of Multi-Objective Evolutionary Algorithms (MOEAs) for Constrained Multi-Objective Optimization Problems (CMOPs) have been proposed in the past few years. The C-DTLZ functions and Real-World-Like Problems (RWLPs) have frequently been used for evaluating the performance of MOEAs on CMOPs. In this paper, however, we show that the C-DTLZ functions and widely-used RWLPs have some unnatural problem features. The experimental results show that an MOEA without any Constraint Handling Techniques (CHTs) can successfully find well-approximated nondominated feasible solutions on the C1-DTLZ1, C1-DTLZ3, and C2-DTLZ2 functions. It is widely believed that RWLPs are MOEA-hard problems, and finding the feasible solutions on them is a very hard task. However, we show that the MOEA without any CHTs can find feasible solutions on widely-used RWLPs such as the speed reducer design problem, the two-bar truss design problem, and the water problem. Also, it is seldom that the infeasible solution simultaneously violates multiple constraints in the RWLPs. Due to the above reasons, we conclude that constrained multi-objective optimization benchmark problems need a careful reconsideration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
约束多目标优化基准问题研究
研究了广泛应用的约束多目标优化基准问题的性质。近年来,针对约束多目标优化问题提出了许多多目标进化算法(moea)。C-DTLZ函数和类现实世界问题(Real-World-Like Problems, rwlp)经常被用来评估cops上moea的性能。然而,在本文中,我们表明C-DTLZ函数和广泛使用的rwlp具有一些非自然的问题特征。实验结果表明,不使用约束处理技术(CHTs)的MOEA可以成功地在C1-DTLZ1、C1-DTLZ3和C2-DTLZ2函数上找到近似的非支配可行解。人们普遍认为rwlp是moea难题,寻找可行的解决方案是一项非常艰巨的任务。然而,我们表明,没有任何CHTs的MOEA可以找到广泛使用的rwlp的可行解决方案,例如减速器设计问题,两杆桁架设计问题和水问题。在rwlp中,不可行的解同时违反多个约束条件的情况也很少。由于上述原因,我们得出结论,约束多目标优化基准问题需要仔细考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-based particle swarm optimization for PID controller tuning Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems New heuristics for multi-objective worst-case optimization in evidence-based robust design Bus Routing for emergency evacuations: The case of the Great Fire of Valparaiso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1