Data Reduction Methodology for Fast-Response Schmidt-Boelter Heat-Transfer Gages

John C. Adams, C. Kidd
{"title":"Data Reduction Methodology for Fast-Response Schmidt-Boelter Heat-Transfer Gages","authors":"John C. Adams, C. Kidd","doi":"10.1115/imece1999-1103","DOIUrl":null,"url":null,"abstract":"\n Transient heat-transfer data have recently been obtained in hypersonic wind tunnels at the Arnold Engineering Development Center (AEDC) with miniaturized fast-response Schmidt-Boelter gages. These sensors have time constants in the 10- to 15-msec range, but have response characteristics that are usually less than first-order. This presents a requirement for a general data reduction method to prevent degradation of the accuracy of the experimental data. A consistent nonambiguous data reduction methodology for fast-response Schmidt-Boelter heat-transfer gages is presented which is easy to implement in an algorithmic fashion. Timewise correction of measured Schmidt-Boelter gage heat flux is no more difficult than that involved in a classical first-order system (Gardon gage), and only involves the determination of a characteristic time measure of the integrated energy deficiency inherent in the gage response. This characteristic time measure is easily determined from the gage response characterization to a step input heat flux by numerical integration of the response versus time data.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-1103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Transient heat-transfer data have recently been obtained in hypersonic wind tunnels at the Arnold Engineering Development Center (AEDC) with miniaturized fast-response Schmidt-Boelter gages. These sensors have time constants in the 10- to 15-msec range, but have response characteristics that are usually less than first-order. This presents a requirement for a general data reduction method to prevent degradation of the accuracy of the experimental data. A consistent nonambiguous data reduction methodology for fast-response Schmidt-Boelter heat-transfer gages is presented which is easy to implement in an algorithmic fashion. Timewise correction of measured Schmidt-Boelter gage heat flux is no more difficult than that involved in a classical first-order system (Gardon gage), and only involves the determination of a characteristic time measure of the integrated energy deficiency inherent in the gage response. This characteristic time measure is easily determined from the gage response characterization to a step input heat flux by numerical integration of the response versus time data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速响应Schmidt-Boelter传热计的数据缩减方法
最近,阿诺德工程发展中心(AEDC)利用小型化快速响应施密特-伯尔特仪表在高超声速风洞中获得了瞬态传热数据。这些传感器的时间常数在10- 15毫秒范围内,但其响应特性通常小于一阶。这就提出了一种通用的数据约简方法的要求,以防止实验数据的准确性下降。一种一致的无歧义的数据减少方法,快速响应的施密特-伯尔特传热计提出,这是容易实现的算法方式。测量的施密特-伯尔特表热通量的时间校正并不比经典一阶系统(加登表)更难,只涉及确定计响应中固有的集成能量缺陷的特征时间测量。通过响应与时间数据的数值积分,可以很容易地从应变响应特性确定到阶跃输入热通量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mass Transfer Process of Gaseous Carbon Dioxide Into Water Jet Through Orifice Mixing System A New Facility for Measurements of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux Numerical Solution of Thermal and Fluid Flow With Phase Change by VOF Method Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components Some Aspects of Critical-Heat-Flux Enhancement in Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1