FPGA Implementation of an Artificial Neural Network for Subatomic Physics Experiment Particles Recognition

Ruiguang Zhao, A. Besson, C. Hu-Guo, Luis Alejandro Perez perez, K. Jaaskelainen, M. Goffe, Yann Hu
{"title":"FPGA Implementation of an Artificial Neural Network for Subatomic Physics Experiment Particles Recognition","authors":"Ruiguang Zhao, A. Besson, C. Hu-Guo, Luis Alejandro Perez perez, K. Jaaskelainen, M. Goffe, Yann Hu","doi":"10.22323/1.343.0066","DOIUrl":null,"url":null,"abstract":"CMOS Pixel Sensors have been used in subatomic physics experiments for charged particles detection. In the International Linear Collider (ILC) vertex detector, the occupancy will be mainly driven by impacts coming from the beam background. This will have a huge impact to the data flow of the system. We propose a design of CMOS pixel sensors with on-chip Artificial Neural Network (ANN) to tag and remove these hits. It is based on different features of hits clusters. In this paper, we will describe the structure of an ANN implemented in an FPGA device. We will show and analyze the distribution of incident angles reconstructed by the ANN.","PeriodicalId":400748,"journal":{"name":"Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP2018)","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.343.0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

CMOS Pixel Sensors have been used in subatomic physics experiments for charged particles detection. In the International Linear Collider (ILC) vertex detector, the occupancy will be mainly driven by impacts coming from the beam background. This will have a huge impact to the data flow of the system. We propose a design of CMOS pixel sensors with on-chip Artificial Neural Network (ANN) to tag and remove these hits. It is based on different features of hits clusters. In this paper, we will describe the structure of an ANN implemented in an FPGA device. We will show and analyze the distribution of incident angles reconstructed by the ANN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚原子物理实验粒子识别人工神经网络的FPGA实现
CMOS像素传感器已在亚原子物理实验中用于带电粒子检测。在国际线性对撞机(International Linear Collider, ILC)的顶点检测器中,来自光束背景的冲击将主要驱动占据。这将对系统的数据流产生巨大的影响。我们提出了一种CMOS像素传感器的设计与片上人工神经网络(ANN)来标记和去除这些命中。它是基于命中簇的不同特征。在本文中,我们将描述在FPGA器件中实现的人工神经网络的结构。我们将展示和分析由人工神经网络重建的入射角分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A High Dynamic Range ASIC for Time of Flight PET with monolithic crystals An Ultra-Fast 10Gb/s 64b66b Data Serialiser Backend in 65nm CMOS Technology ALICE trigger system for LHC Run 3 First Double-Sided End-Cap Strip Module for the ATLAS High-Luminosity Upgrade A collaborative HDL management tool for ATLAS L1Calo upgrades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1