A SIMPLE OF IOT BASED SOCIAL CONTACT TRACKING FOR INFECTIOUS PATIENT USING ULTRASONIC SENSOR: A PRELIMINARY STUDY

I. Amri, J. Pebralia
{"title":"A SIMPLE OF IOT BASED SOCIAL CONTACT TRACKING FOR INFECTIOUS PATIENT USING ULTRASONIC SENSOR: A PRELIMINARY STUDY","authors":"I. Amri, J. Pebralia","doi":"10.22437/jop.v7i2.18192","DOIUrl":null,"url":null,"abstract":"One of the efforts to inhibit the transmission of infectious diseases caused by viruses and bacteria is through applying physical distancing. This study aims to create a contact monitoring tool for patients who have been infected with contagious diseases based on ultrasonic sensors and the internet of things (IoT). This instrumentation system consists of four ultrasonic sensors mounted on the left, right, front and rear sides. The sensor will detect the distance of the object that is approaching directly. Then, the measurement data of each sensor will be sent to the cloud and accessed through the Blynk application. The results show that the performance of each ultrasonic sensor is excellent and can be applied as a distance measuring device between patients and other people. The calibration results show that the ultrasonic sensor can measure a distance of 10-200 cm with an R squared value of 0.999-1. In addition, the ESP8266 also shows excellent performance. ESP8266 can send data to the cloud to be accessed and displayed in the form of a bar graph on a mobile phone. Thus, the overall system can be stated that the instrumentation system has functioned and is working well.","PeriodicalId":415382,"journal":{"name":"JOURNAL ONLINE OF PHYSICS","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL ONLINE OF PHYSICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22437/jop.v7i2.18192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the efforts to inhibit the transmission of infectious diseases caused by viruses and bacteria is through applying physical distancing. This study aims to create a contact monitoring tool for patients who have been infected with contagious diseases based on ultrasonic sensors and the internet of things (IoT). This instrumentation system consists of four ultrasonic sensors mounted on the left, right, front and rear sides. The sensor will detect the distance of the object that is approaching directly. Then, the measurement data of each sensor will be sent to the cloud and accessed through the Blynk application. The results show that the performance of each ultrasonic sensor is excellent and can be applied as a distance measuring device between patients and other people. The calibration results show that the ultrasonic sensor can measure a distance of 10-200 cm with an R squared value of 0.999-1. In addition, the ESP8266 also shows excellent performance. ESP8266 can send data to the cloud to be accessed and displayed in the form of a bar graph on a mobile phone. Thus, the overall system can be stated that the instrumentation system has functioned and is working well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种简单的基于物联网的传染病患者超声传感器社会接触跟踪的初步研究
抑制由病毒和细菌引起的传染病传播的努力之一是保持身体距离。本研究旨在开发一种基于超声波传感器和物联网(IoT)的传染病患者接触监测工具。该仪器系统由四个超声波传感器组成,分别安装在左、右、前、后侧面。传感器将检测直接接近的物体的距离。然后,每个传感器的测量数据将被发送到云端,并通过Blynk应用程序访问。结果表明,各传感器性能优良,可作为患者与他人之间的距离测量装置。标定结果表明,超声波传感器可测量10 ~ 200 cm的距离,R平方值为0.999-1。此外,ESP8266也表现出优异的性能。ESP8266可以将数据发送到云端,并以条形图的形式显示在手机上。因此,整个系统可以说明仪器系统已经运行并且工作良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
STUDY ON DOPPLER EFFECT BASED ON FREQUENCY AND VELOCITY OF SOUND SOURCE IN THE WATERS PENGEMBANGAN ALAT UKUR KEMATANGAN KOMPOS BERBASIS ARDUINO ATMEGA328 KARAKTERISASI NATURAL HIDROKSIAPATIT DARI TULANG IKAN LELE (Calarias batracus) ANALYSIS OF ACTIVATED CARBON (PETUNG BAMBOO)/LATEX COMPOSITE AS X-BAND WAVE-ABSORBING MATERIAL ANALISIS SIFAT MEKANIK LIST GYPSUM BERBASIS SERAT RAMI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1