Zhixian Yan, Lazar Spremic, D. Chakraborty, C. Parent, S. Spaccapietra, K. Aberer
{"title":"Automatic construction and multi-level visualization of semantic trajectories","authors":"Zhixian Yan, Lazar Spremic, D. Chakraborty, C. Parent, S. Spaccapietra, K. Aberer","doi":"10.1145/1869790.1869879","DOIUrl":null,"url":null,"abstract":"With the prevalence of GPS-embedded mobile devices, enormous amounts of mobility data are being collected in the form of trajectory - a stream of (x,y,t) points. Such trajectories are of heterogeneous entities - vehicles, people, animals, parcels etc. Most applications primarily analyze raw trajectory data and extract geometric patterns. Real-life applications however, need a far more comprehensive, semantic representation of trajectories. This paper demonstrates the automatic construction and visualization capabilities of SeMiTri - a system we built that exploits 3rd party information sources containing geographic information, to semantically enrich trajectories. The construction stack encapsulates several spatio-temporal data integration and mining techniques to automatically compute and annotate all meaningful parts of heterogeneous trajectories. The visualization interface exhibits different levels of data abstraction, from low-level raw trajectories (i.e. the initial GPS trace) to high-level semantic trajectories (i.e. the sequence of interesting places where moving objects have passed and/or stayed).","PeriodicalId":359068,"journal":{"name":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869790.1869879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
With the prevalence of GPS-embedded mobile devices, enormous amounts of mobility data are being collected in the form of trajectory - a stream of (x,y,t) points. Such trajectories are of heterogeneous entities - vehicles, people, animals, parcels etc. Most applications primarily analyze raw trajectory data and extract geometric patterns. Real-life applications however, need a far more comprehensive, semantic representation of trajectories. This paper demonstrates the automatic construction and visualization capabilities of SeMiTri - a system we built that exploits 3rd party information sources containing geographic information, to semantically enrich trajectories. The construction stack encapsulates several spatio-temporal data integration and mining techniques to automatically compute and annotate all meaningful parts of heterogeneous trajectories. The visualization interface exhibits different levels of data abstraction, from low-level raw trajectories (i.e. the initial GPS trace) to high-level semantic trajectories (i.e. the sequence of interesting places where moving objects have passed and/or stayed).