Automatic construction and multi-level visualization of semantic trajectories

Zhixian Yan, Lazar Spremic, D. Chakraborty, C. Parent, S. Spaccapietra, K. Aberer
{"title":"Automatic construction and multi-level visualization of semantic trajectories","authors":"Zhixian Yan, Lazar Spremic, D. Chakraborty, C. Parent, S. Spaccapietra, K. Aberer","doi":"10.1145/1869790.1869879","DOIUrl":null,"url":null,"abstract":"With the prevalence of GPS-embedded mobile devices, enormous amounts of mobility data are being collected in the form of trajectory - a stream of (x,y,t) points. Such trajectories are of heterogeneous entities - vehicles, people, animals, parcels etc. Most applications primarily analyze raw trajectory data and extract geometric patterns. Real-life applications however, need a far more comprehensive, semantic representation of trajectories. This paper demonstrates the automatic construction and visualization capabilities of SeMiTri - a system we built that exploits 3rd party information sources containing geographic information, to semantically enrich trajectories. The construction stack encapsulates several spatio-temporal data integration and mining techniques to automatically compute and annotate all meaningful parts of heterogeneous trajectories. The visualization interface exhibits different levels of data abstraction, from low-level raw trajectories (i.e. the initial GPS trace) to high-level semantic trajectories (i.e. the sequence of interesting places where moving objects have passed and/or stayed).","PeriodicalId":359068,"journal":{"name":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","volume":"287 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1869790.1869879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

With the prevalence of GPS-embedded mobile devices, enormous amounts of mobility data are being collected in the form of trajectory - a stream of (x,y,t) points. Such trajectories are of heterogeneous entities - vehicles, people, animals, parcels etc. Most applications primarily analyze raw trajectory data and extract geometric patterns. Real-life applications however, need a far more comprehensive, semantic representation of trajectories. This paper demonstrates the automatic construction and visualization capabilities of SeMiTri - a system we built that exploits 3rd party information sources containing geographic information, to semantically enrich trajectories. The construction stack encapsulates several spatio-temporal data integration and mining techniques to automatically compute and annotate all meaningful parts of heterogeneous trajectories. The visualization interface exhibits different levels of data abstraction, from low-level raw trajectories (i.e. the initial GPS trace) to high-level semantic trajectories (i.e. the sequence of interesting places where moving objects have passed and/or stayed).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语义轨迹的自动构建和多层次可视化
随着嵌入gps的移动设备的普及,大量的移动数据以轨迹的形式被收集——一个(x,y,t)点流。这样的轨迹是异质实体——车辆、人、动物、包裹等。大多数应用程序主要分析原始轨迹数据并提取几何模式。然而,现实生活中的应用需要更全面的、语义化的轨迹表示。本文展示了SeMiTri的自动构建和可视化功能,SeMiTri是我们开发的一个系统,利用包含地理信息的第三方信息源,在语义上丰富轨迹。构建堆栈封装了多种时空数据集成和挖掘技术,可以自动计算和注释异构轨迹的所有有意义的部分。可视化界面展示了不同级别的数据抽象,从低级的原始轨迹(即初始GPS轨迹)到高级语义轨迹(即移动对象经过和/或停留的有趣位置的序列)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pai Geolocation Time Geography Stationarity Cognitive Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1