Zsolt Tabi, Bence Bako, Dániel T. R. Nagy, Péter Vaderna, Zsófia Kallus, Péter Hága, Z. Zimborás
{"title":"Hybrid Quantum-Classical Autoencoders for End-to-End Radio Communication","authors":"Zsolt Tabi, Bence Bako, Dániel T. R. Nagy, Péter Vaderna, Zsófia Kallus, Péter Hága, Z. Zimborás","doi":"10.1109/SEC54971.2022.00071","DOIUrl":null,"url":null,"abstract":"Quantum neural networks are emerging as poten-tial candidates to leverage noisy quantum processing units for applications. Here we introduce hybrid quantum-classical au-to encoders for end-to-end radio communication. In the physical layer of classical wireless systems, we study the performance of simulated architectures for standard encoded radio signals over a noisy channel. We implement a hybrid model, where a quantum decoder in the receiver works with a classical encoder in the transmitter part. Besides learning a latent space representation of the input symbols with good robustness against signal degradation, a generalized data re-uploading scheme for the qubit-based circuits allows to meet inference-time constraints of the application.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum neural networks are emerging as poten-tial candidates to leverage noisy quantum processing units for applications. Here we introduce hybrid quantum-classical au-to encoders for end-to-end radio communication. In the physical layer of classical wireless systems, we study the performance of simulated architectures for standard encoded radio signals over a noisy channel. We implement a hybrid model, where a quantum decoder in the receiver works with a classical encoder in the transmitter part. Besides learning a latent space representation of the input symbols with good robustness against signal degradation, a generalized data re-uploading scheme for the qubit-based circuits allows to meet inference-time constraints of the application.