Attentive Autoencoders For Improving Visual Anomaly Detection

Ambareesh Ravi, F. Karray
{"title":"Attentive Autoencoders For Improving Visual Anomaly Detection","authors":"Ambareesh Ravi, F. Karray","doi":"10.1109/ICAS49788.2021.9551183","DOIUrl":null,"url":null,"abstract":"Understanding the notion of normality in visual data is a complex issue in computer vision with plenty of potential applications in several sectors. The immense effort required for optimal design for real-world application of existing methods warrants the need for a generic framework that is efficient, automated and can be momentarily deployed for the operation, reducing the effort expended on model design and hyper-parameter tuning. Hence, we propose a novel, modular and model-agnostic improvement to the conventional AutoEncoder architecture, based on visual soft-attention for the inputs to make them robust and readily improve their performance in automated semi-supervised visual anomaly detection tasks, without any extra effort in terms of hyperparameter tuning. Besides, we discuss the role of attention in AutoEncoders (AE) that can significantly improve learning and the efficacy of the models with detailed experimental results on diverse visual anomaly detection datasets.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the notion of normality in visual data is a complex issue in computer vision with plenty of potential applications in several sectors. The immense effort required for optimal design for real-world application of existing methods warrants the need for a generic framework that is efficient, automated and can be momentarily deployed for the operation, reducing the effort expended on model design and hyper-parameter tuning. Hence, we propose a novel, modular and model-agnostic improvement to the conventional AutoEncoder architecture, based on visual soft-attention for the inputs to make them robust and readily improve their performance in automated semi-supervised visual anomaly detection tasks, without any extra effort in terms of hyperparameter tuning. Besides, we discuss the role of attention in AutoEncoders (AE) that can significantly improve learning and the efficacy of the models with detailed experimental results on diverse visual anomaly detection datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进视觉异常检测的细心自编码器
理解视觉数据中正态性的概念在计算机视觉中是一个复杂的问题,在几个领域有很多潜在的应用。为现有方法的实际应用进行优化设计所需的巨大努力保证了对通用框架的需求,该框架高效、自动化,可以随时部署用于操作,减少了在模型设计和超参数调整上花费的精力。因此,我们对传统的AutoEncoder架构提出了一种新颖的、模块化的、与模型无关的改进,该改进基于输入的视觉软注意,使其具有鲁棒性,并易于提高其在自动半监督视觉异常检测任务中的性能,而无需在超参数调整方面做出任何额外的努力。此外,我们讨论了注意在自动编码器(AE)中的作用,它可以显著提高模型的学习和效率,并在不同的视觉异常检测数据集中给出了详细的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Automated Search for Underwater Threats Using Multistatic Sensor Fields by Incorporating Unconfirmed Track Information Matching Models for Crowd-Shipping Considering Shipper’s Acceptance Uncertainty Observational Learning: Imitation Through an Adaptive Probabilistic Approach Simultaneous Calibration of Positions, Orientations, and Time Offsets, Among Multiple Microphone Arrays Modified crop health monitoring and pesticide spraying system using NDVI and Semantic Segmentation: An AGROCOPTER based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1