A Normalized Local Binary Fitting Model for Image Segmentation

Yali Peng, Fang Liu, Shigang Liu
{"title":"A Normalized Local Binary Fitting Model for Image Segmentation","authors":"Yali Peng, Fang Liu, Shigang Liu","doi":"10.1109/iNCoS.2012.119","DOIUrl":null,"url":null,"abstract":"A normalized local binary fitting (NLBF) model is proposed for image segmentation in this paper. The proposed model can effectively and efficiently segment images with intensity in homogeneity because the image local characteristics are considered. At the same time, we use a Gaussian filtering process instead of the regularization to keep the level set function smooth in the evolution process. The strategy can reduce computational cost. Comparative experimental results on synthetic and real images demonstrate that the proposed model outperforms the well-known local binary fitting (LBF) model in computational efficiency and robustness to the initial contour.","PeriodicalId":287478,"journal":{"name":"2012 Fourth International Conference on Intelligent Networking and Collaborative Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iNCoS.2012.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A normalized local binary fitting (NLBF) model is proposed for image segmentation in this paper. The proposed model can effectively and efficiently segment images with intensity in homogeneity because the image local characteristics are considered. At the same time, we use a Gaussian filtering process instead of the regularization to keep the level set function smooth in the evolution process. The strategy can reduce computational cost. Comparative experimental results on synthetic and real images demonstrate that the proposed model outperforms the well-known local binary fitting (LBF) model in computational efficiency and robustness to the initial contour.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像分割的归一化局部二值拟合模型
提出了一种用于图像分割的归一化局部二值拟合(NLBF)模型。该模型考虑了图像局部特征,能够有效地分割出均匀性较强的图像。同时,我们用高斯滤波代替正则化来保持水平集函数在进化过程中的平滑性。该策略可以降低计算成本。在合成图像和真实图像上的对比实验结果表明,该模型在计算效率和对初始轮廓的鲁棒性方面优于著名的局部二值拟合(LBF)模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Evaluation of Private Information Retrieval Techniques in Location-Based Services SOSCast: Location Estimation of Immobilized Persons through SOS Message Propagation Unsupervised Human Action Categorization Using Latent Dirichlet Markov Clustering A P2P Traffic Localization Method with Additional Delay Insertion Evaluation for Acquiring Method for Agents' Actions with Ant Colony Optimization in Robo Cup Rescue Simulation System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1