{"title":"Challenges and Uncertainties Relating to Open Caissons","authors":"F. Abdrabbo, K. E. Gaaver","doi":"10.1179/dfi.2012.002","DOIUrl":null,"url":null,"abstract":"Abstract Open caissons are used for many geotechnical engineering applications. Open caissons may be used as deep foundation elements bypassing weak soils to tip in firm deeper strata, and in rivers and maritime construction to reduce the risk of scour. Open caissons are also used for collecting sewage water through gravity sewer pipe networks or from sewer force mains. In such applications, the design and construction of open caissons require a detailed soil investigation program. In this way, the design and construction plan of an open caisson can be developed with full knowledge of the prevailing subsoil conditions. The engineering and construction techniques are key factors to achieve functional caissons. Based on close observations during construction stages, the current study presents some challenges that were encountered during the construction of two open caissons of internal diameters 20 m and 10 m (65.6 ft and 32.8 ft). This paper describes the procedure followed to alleviate the construction difficulties encountered. Site exploration program and control measures required to satisfy design and construction requirements are crucial aspects. Sinking of open caissons in dense or very dense sands is risky. Incorrect sinking of open caissons may cause extra cost, delay in construction, and harm to nearby structures. Air/water jetting near the cutting edge of an open caisson, outside slurry trench, and/or inside open trench may be used to drive an open caisson downward. Unsymmetrical work around an open caisson may lead to tilting of the caisson. If this occurs, the tilt should be immediately corrected before resuming the sinking process. Improper cleaning of fine materials on the caisson’s excavation bed, and/or inappropriate pouring of underwater concrete may result in a defective concrete seal. The paper contains a series of practical guidelines to assist those intending to use open caissons, and shares good caisson sinking practice with practitioners. Finally, the study aims to understand the difficulties encountered and to anticipate future problems.","PeriodicalId":272645,"journal":{"name":"DFI Journal - The Journal of the Deep Foundations Institute","volume":"364 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DFI Journal - The Journal of the Deep Foundations Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/dfi.2012.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Abstract Open caissons are used for many geotechnical engineering applications. Open caissons may be used as deep foundation elements bypassing weak soils to tip in firm deeper strata, and in rivers and maritime construction to reduce the risk of scour. Open caissons are also used for collecting sewage water through gravity sewer pipe networks or from sewer force mains. In such applications, the design and construction of open caissons require a detailed soil investigation program. In this way, the design and construction plan of an open caisson can be developed with full knowledge of the prevailing subsoil conditions. The engineering and construction techniques are key factors to achieve functional caissons. Based on close observations during construction stages, the current study presents some challenges that were encountered during the construction of two open caissons of internal diameters 20 m and 10 m (65.6 ft and 32.8 ft). This paper describes the procedure followed to alleviate the construction difficulties encountered. Site exploration program and control measures required to satisfy design and construction requirements are crucial aspects. Sinking of open caissons in dense or very dense sands is risky. Incorrect sinking of open caissons may cause extra cost, delay in construction, and harm to nearby structures. Air/water jetting near the cutting edge of an open caisson, outside slurry trench, and/or inside open trench may be used to drive an open caisson downward. Unsymmetrical work around an open caisson may lead to tilting of the caisson. If this occurs, the tilt should be immediately corrected before resuming the sinking process. Improper cleaning of fine materials on the caisson’s excavation bed, and/or inappropriate pouring of underwater concrete may result in a defective concrete seal. The paper contains a series of practical guidelines to assist those intending to use open caissons, and shares good caisson sinking practice with practitioners. Finally, the study aims to understand the difficulties encountered and to anticipate future problems.