Face recognition by support vector machines

G. Guo, S. Li, K. Chan
{"title":"Face recognition by support vector machines","authors":"G. Guo, S. Li, K. Chan","doi":"10.1109/AFGR.2000.840634","DOIUrl":null,"url":null,"abstract":"Support vector machines (SVM) have been recently proposed as a new technique for pattern recognition. SVM with a binary tree recognition strategy are used to tackle the face recognition problem. We illustrate the potential of SVM on the Cambridge ORL face database, which consists of 400 images of 40 individuals, containing quite a high degree of variability in expression, pose, and facial details. We also present the recognition experiment on a larger face database of 1079 images of 137 individuals. We compare the SVM-based recognition with the standard eigenface approach using the nearest center classification (NCC) criterion.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"611","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 611

Abstract

Support vector machines (SVM) have been recently proposed as a new technique for pattern recognition. SVM with a binary tree recognition strategy are used to tackle the face recognition problem. We illustrate the potential of SVM on the Cambridge ORL face database, which consists of 400 images of 40 individuals, containing quite a high degree of variability in expression, pose, and facial details. We also present the recognition experiment on a larger face database of 1079 images of 137 individuals. We compare the SVM-based recognition with the standard eigenface approach using the nearest center classification (NCC) criterion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的人脸识别
支持向量机(SVM)是近年来提出的一种新的模式识别技术。采用二叉树识别策略的支持向量机来解决人脸识别问题。我们在剑桥ORL人脸数据库上展示了支持向量机的潜力,该数据库由40个人的400张图像组成,在表情、姿势和面部细节方面包含相当高的可变性。我们还在一个包含137个个体的1079张图像的更大的人脸数据库上进行了识别实验。我们将基于支持向量机的识别方法与使用最近中心分类(NCC)标准的标准特征脸方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifying facial attributes using a 2-D Gabor wavelet representation and discriminant analysis Facial tracking and animation using a 3D sensor Automatic handwriting gestures recognition using hidden Markov models Real-time stereo tracking for head pose and gaze estimation Real-time detection of nodding and head-shaking by directly detecting and tracking the "between-eyes"
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1