{"title":"Cross-Layer Learning","authors":"Tushar Mane, A. Pawar","doi":"10.4018/978-1-7998-8386-9.ch005","DOIUrl":null,"url":null,"abstract":"Deep learning-based investigation mechanisms are available for conventional forensics, but not for IoT forensics. Dividing the system into different layers according to their functionalities, collecting data from each layer, finding the correlating factor, and using it for pattern detection is the fundamental concept behind the proposed intelligent system. The authors utilize this notion for embedding intelligence in forensics and speed up the investigation process by providing hints to the examiner. They propose a novel cross-layer learning architecture (CCLA) for IoT forensics. To the best of their knowledge, this is the first attempt to incorporate deep learning into the forensics of the IoT ecosystem.","PeriodicalId":281747,"journal":{"name":"Technologies to Advance Automation in Forensic Science and Criminal Investigation","volume":"49 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies to Advance Automation in Forensic Science and Criminal Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-8386-9.ch005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based investigation mechanisms are available for conventional forensics, but not for IoT forensics. Dividing the system into different layers according to their functionalities, collecting data from each layer, finding the correlating factor, and using it for pattern detection is the fundamental concept behind the proposed intelligent system. The authors utilize this notion for embedding intelligence in forensics and speed up the investigation process by providing hints to the examiner. They propose a novel cross-layer learning architecture (CCLA) for IoT forensics. To the best of their knowledge, this is the first attempt to incorporate deep learning into the forensics of the IoT ecosystem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨层学习
基于深度学习的调查机制可用于传统取证,但不适用于物联网取证。根据系统的功能将系统划分为不同的层,从每一层收集数据,找到相关因素,并将其用于模式检测是所提出的智能系统背后的基本概念。作者利用这一概念嵌入情报在法医学和加速调查过程,通过提供提示审查员。他们提出了一种新的物联网取证跨层学习架构(CCLA)。据他们所知,这是将深度学习纳入物联网生态系统取证的第一次尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Machine Learning in Financial Fraud Forensics in the Age of Cybersecurity Large Feature Mining With Ensemble Learning for Image Forgery Detection Fire Investigation and Ignitable Liquid Residue Analysis Forensic Camera Identification in Social Networks via Camera Fingerprint Advances in Forensic Sedimentology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1