Fully Convolutional Network-Based DOA Estimation with Acoustic Vector Sensor

Sifan Wang, J. Geng, Xin Lou
{"title":"Fully Convolutional Network-Based DOA Estimation with Acoustic Vector Sensor","authors":"Sifan Wang, J. Geng, Xin Lou","doi":"10.1109/SiPS52927.2021.00014","DOIUrl":null,"url":null,"abstract":"In this paper, a learning-based direction of arrival (DOA) estimation pipeline for acoustic vector sensor (AVS) is proposed. In the proposed pipeline, a fully convolutional network (FCN) is introduced for uncontaminated time-frequency (TF) point extraction, which is a crucial step for AVS-based DOA estimation. Unlike conventional direct path dominant (DPD) or single source points (SSP) detection, the uncontaminated TF point extraction problem is modeled as an image segmentation problem, where the direct DOA cues from the spatial response of AVS is utilized for ground truth labeling to generate the training data of the network. With the extracted uncontaminated TF points, the final DOA can be generated using the proposed fuzzy geometric median (FGM) clustering. Simulation results show that the proposed pipeline is capable of improving the accuracy in the cases of small angular difference between acoustic sources and improving robustness in strong reverberation and noise situations.","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"292 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a learning-based direction of arrival (DOA) estimation pipeline for acoustic vector sensor (AVS) is proposed. In the proposed pipeline, a fully convolutional network (FCN) is introduced for uncontaminated time-frequency (TF) point extraction, which is a crucial step for AVS-based DOA estimation. Unlike conventional direct path dominant (DPD) or single source points (SSP) detection, the uncontaminated TF point extraction problem is modeled as an image segmentation problem, where the direct DOA cues from the spatial response of AVS is utilized for ground truth labeling to generate the training data of the network. With the extracted uncontaminated TF points, the final DOA can be generated using the proposed fuzzy geometric median (FGM) clustering. Simulation results show that the proposed pipeline is capable of improving the accuracy in the cases of small angular difference between acoustic sources and improving robustness in strong reverberation and noise situations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于全卷积网络的声矢量传感器DOA估计
提出了一种基于学习的声矢量传感器到达方向(DOA)估计管道。在该管道中,引入了一种全卷积网络(FCN)来进行无污染的时频(TF)点提取,这是基于avs的DOA估计的关键步骤。与传统的直接路径主导(DPD)或单源点(SSP)检测不同,未污染TF点提取问题被建模为图像分割问题,其中利用AVS空间响应的直接DOA线索进行地面真值标记以生成网络的训练数据。利用提取的未受污染的TF点,利用所提出的模糊几何中位数聚类方法生成最终的DOA。仿真结果表明,该方法在声源角差较小的情况下能够提高精度,在强混响和强噪声情况下能够提高鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reconfigurable Neural Synaptic Plasticity-Based Stochastic Deep Neural Network Computing Efficient Mind-wandering Detection System with GSR Signals on MM-SART Database Time sliding window for the detection of CCSK frames Implementation of a Two-Dimensional FFT/IFFT Processor for Real-Time High-Resolution Synthetic Aperture Radar Imaging TernGEMM: GEneral Matrix Multiply Library with Ternary Weights for Fast DNN Inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1