{"title":"A Responsive Knapsack-Based Algorithm for Resource Provisioning and Scheduling of Scientific Workflows in Clouds","authors":"M. A. Rodriguez, R. Buyya","doi":"10.1109/ICPP.2015.93","DOIUrl":null,"url":null,"abstract":"Scientific workflows are used to process vast amounts of data and to conduct large-scale experiments and simulations. They are time consuming and resource intensive applications that benefit from running in distributed platforms. In particular, scientific workflows can greatly leverage the ease-of-access, affordability, and scalability offered by cloud computing. To achieve this, innovative and efficient ways of orchestrating the workflow tasks and managing the compute resources in a cost-conscious manner need to be developed. We propose an adaptive, resource provisioning and scheduling algorithm for scientific workflows deployed in Infrastructure as a Service clouds. Our algorithm was designed to address challenges specific to clouds such as the pay-as-you-go model, the performance variation of resources and the on-demand access to unlimited, heterogeneous virtual machines. It is capable of responding to the dynamics of the cloud infrastructure and is successful in generating efficient solutions that meet a user-defined deadline and minimise the overall cost of the used infrastructure. Our simulation experiments demonstrate that it performs better than other state-of-the-art algorithms.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Scientific workflows are used to process vast amounts of data and to conduct large-scale experiments and simulations. They are time consuming and resource intensive applications that benefit from running in distributed platforms. In particular, scientific workflows can greatly leverage the ease-of-access, affordability, and scalability offered by cloud computing. To achieve this, innovative and efficient ways of orchestrating the workflow tasks and managing the compute resources in a cost-conscious manner need to be developed. We propose an adaptive, resource provisioning and scheduling algorithm for scientific workflows deployed in Infrastructure as a Service clouds. Our algorithm was designed to address challenges specific to clouds such as the pay-as-you-go model, the performance variation of resources and the on-demand access to unlimited, heterogeneous virtual machines. It is capable of responding to the dynamics of the cloud infrastructure and is successful in generating efficient solutions that meet a user-defined deadline and minimise the overall cost of the used infrastructure. Our simulation experiments demonstrate that it performs better than other state-of-the-art algorithms.