Modeling Air Temperature in Forested Areas using Machine Learning

Massoud Forooshani, A. Gegov, N. Pepin, M. Adda
{"title":"Modeling Air Temperature in Forested Areas using Machine Learning","authors":"Massoud Forooshani, A. Gegov, N. Pepin, M. Adda","doi":"10.37394/23205.2022.21.23","DOIUrl":null,"url":null,"abstract":"Air Temperature is a fundamental measure of the Earth’s climate but is only measured at fixed locations. Land surface temperature can be measured widely using satellites. To estimate air temperature (Ta) from the surface temperature (Ts) measured on the forested slopes of Kilimanjaro, four models with unique sets of inputs were tested using five machine learning algorithms. The RMSE for each model was compared with a benchmark model. Models and algorithms were ranked according to their RMSE (Root Mean Square Error) The models and algorithms reliability and consistency ranking were calculated. The best model and algorithm were determined. Novel models results were compared with the benchmark model. All models outperformed the benchmark model in the consistency ranking while three out of four models outperformed the benchmark model in the reliability ranking. Thus machine learning improves the estimation of air temperature in this forested environment.","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2022.21.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air Temperature is a fundamental measure of the Earth’s climate but is only measured at fixed locations. Land surface temperature can be measured widely using satellites. To estimate air temperature (Ta) from the surface temperature (Ts) measured on the forested slopes of Kilimanjaro, four models with unique sets of inputs were tested using five machine learning algorithms. The RMSE for each model was compared with a benchmark model. Models and algorithms were ranked according to their RMSE (Root Mean Square Error) The models and algorithms reliability and consistency ranking were calculated. The best model and algorithm were determined. Novel models results were compared with the benchmark model. All models outperformed the benchmark model in the consistency ranking while three out of four models outperformed the benchmark model in the reliability ranking. Thus machine learning improves the estimation of air temperature in this forested environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习模拟森林地区的空气温度
气温是衡量地球气候的基本指标,但只能在固定地点测量。利用卫星可以广泛测量地表温度。为了从乞力马扎罗山森林覆盖的山坡上测量到的地表温度(Ts)估计气温(Ta),我们使用五种机器学习算法测试了四种具有独特输入集的模型。将每个模型的RMSE与基准模型进行比较。根据模型和算法的均方根误差(RMSE)进行排序,计算模型和算法的可靠性和一致性排序。确定了最佳模型和算法。将新模型的结果与基准模型进行了比较。所有模型在一致性排名上都优于基准模型,而4个模型中有3个在可靠性排名上优于基准模型。因此,机器学习改进了对森林环境中空气温度的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Medical Image Classification using a Many to Many Relation, Multilayered Fuzzy Systems and AI Aspects of Symmetry in Petri Nets Chaos in Order: Applying ML, NLP, and Chaos Theory in Open Source Intelligence for Counter-Terrorism Combinatorial Optimization of Engineering Systems based on Diagrammatic Design Federated Learning: Attacks and Defenses, Rewards, Energy Efficiency: Past, Present and Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1