Moment Estimation of the Probit Model with an Endogenous Continuous Regressor

IF 1.5 4区 经济学 Q2 ECONOMICS Japanese Economic Review Pub Date : 2016-05-18 DOI:10.1111/jere.12091
Daiji Kawaguchi, Yukitoshi Matsushita, Hisahiro Naito
{"title":"Moment Estimation of the Probit Model with an Endogenous Continuous Regressor","authors":"Daiji Kawaguchi,&nbsp;Yukitoshi Matsushita,&nbsp;Hisahiro Naito","doi":"10.1111/jere.12091","DOIUrl":null,"url":null,"abstract":"<p>We propose a generalized method of moments (GMM) estimator with optimal instruments for a probit model that includes a continuous endogenous regressor. This GMM estimator incorporates the probit error and the heteroscedasticity of the error term in the first-stage equation in order to construct the optimal instruments. The estimator estimates the structural equation and the first-stage equation jointly and, based on this joint moment condition, is efficient within the class of GMM estimators. To estimate the heteroscedasticity of the error term of the first-stage equation, we use the <i>k</i>-nearest neighbour (<i>k</i>-nn) non-parametric estimation procedure. Our Monte Carlo simulation shows that in the presence of heteroscedasticity and endogeneity, our GMM estimator outperforms the two-stage conditional maximum likelihood estimator. Our results suggest that in the presence of heteroscedasticity in the first-stage equation, the proposed GMM estimator with optimal instruments is a useful option for researchers.</p>","PeriodicalId":45642,"journal":{"name":"Japanese Economic Review","volume":"68 1","pages":"48-62"},"PeriodicalIF":1.5000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/jere.12091","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Economic Review","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jere.12091","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a generalized method of moments (GMM) estimator with optimal instruments for a probit model that includes a continuous endogenous regressor. This GMM estimator incorporates the probit error and the heteroscedasticity of the error term in the first-stage equation in order to construct the optimal instruments. The estimator estimates the structural equation and the first-stage equation jointly and, based on this joint moment condition, is efficient within the class of GMM estimators. To estimate the heteroscedasticity of the error term of the first-stage equation, we use the k-nearest neighbour (k-nn) non-parametric estimation procedure. Our Monte Carlo simulation shows that in the presence of heteroscedasticity and endogeneity, our GMM estimator outperforms the two-stage conditional maximum likelihood estimator. Our results suggest that in the presence of heteroscedasticity in the first-stage equation, the proposed GMM estimator with optimal instruments is a useful option for researchers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内源性连续回归概率模型的矩估计
我们提出了一个广义矩估计方法(GMM)与最优工具的概率模型,其中包括一个连续的内生回归量。该GMM估计方法结合了概率误差和误差项在第一阶段方程中的异方差,以构建最优的仪器。该估计器联合估计结构方程和第一阶段方程,基于此联合力矩条件,在GMM估计器中是有效的。为了估计第一阶段方程误差项的异方差,我们使用k近邻(k-nn)非参数估计过程。我们的蒙特卡罗模拟表明,在异方差和内生性存在的情况下,我们的GMM估计器优于两阶段条件极大似然估计器。我们的研究结果表明,在第一阶段方程中存在异方差的情况下,所提出的具有最佳工具的GMM估计器对研究人员来说是一个有用的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
15
期刊介绍: Started in 1950 by a group of leading Japanese economists under the title The Economic Studies Quarterly, the journal became the official publication of the Japanese Economic Association in 1959. As its successor, The Japanese Economic Review has become the Japanese counterpart of The American Economic Review, publishing substantial economic analysis of the highest quality across the whole field of economics from researchers both within and outside Japan. It also welcomes innovative and thought-provoking contributions with strong relevance to real economic issues, whether political, theoretical or policy-oriented.
期刊最新文献
Issue Information - Toc Patent Statistics as an Innovation Indicator? Evidence from the Hard Disk Drive Industry Populism, Fairness and Competition: Should We Care and What Could We Do? Issue Information - Backmatter Price Effects of Target Ratcheting: A Progress Report on Medical Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1