Foreground Object Detection in Complex Scenes Using Cluster Color

Chung-Chi Lin, W. Tsai, C. Liaw
{"title":"Foreground Object Detection in Complex Scenes Using Cluster Color","authors":"Chung-Chi Lin, W. Tsai, C. Liaw","doi":"10.1109/IMIS.2014.77","DOIUrl":null,"url":null,"abstract":"In visual surveillance systems, the image foreground object detection must face the problems of moving backgrounds, illumination changes, chaotic scenes, etc. in real word applications. The most used and accurate methods are mostly pixel-based, taking up more memory and requiring longer execution time. This paper presents a cluster color background model that possesses efficient processing and low memory requirement in complex scenes. Our proposed approach consumes 32.5% less memory and increases accuracy by at least 2.5% compared to other existing methods. Last, implementing the object detection algorithm on the 2.83GHz CPU, we can achieve 26 frames per second for the benchmark video with image size 768×576.","PeriodicalId":345694,"journal":{"name":"2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMIS.2014.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In visual surveillance systems, the image foreground object detection must face the problems of moving backgrounds, illumination changes, chaotic scenes, etc. in real word applications. The most used and accurate methods are mostly pixel-based, taking up more memory and requiring longer execution time. This paper presents a cluster color background model that possesses efficient processing and low memory requirement in complex scenes. Our proposed approach consumes 32.5% less memory and increases accuracy by at least 2.5% compared to other existing methods. Last, implementing the object detection algorithm on the 2.83GHz CPU, we can achieve 26 frames per second for the benchmark video with image size 768×576.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类颜色的复杂场景前景目标检测
在视觉监控系统中,图像前景目标检测必须面对现实世界应用中背景移动、光照变化、场景混乱等问题。最常用和最精确的方法大多是基于像素的,占用更多的内存,需要更长的执行时间。提出了一种在复杂场景下处理效率高、内存要求低的聚类彩色背景模型。与其他现有方法相比,我们提出的方法消耗的内存减少了32.5%,准确性提高了至少2.5%。最后,在2.83GHz的CPU上实现目标检测算法,对于图像大小为768×576的基准视频,我们可以达到每秒26帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-defense Mechanism against DDoS in SDN Based CDNi Extending the EPCIS with Building Automation Systems: A New Information System for the Internet of Things A Survey of Green, Energy-Aware Security and Some of Its Recent Developments in Networking and Mobile Computing A Dual-Path-Based Data Aggregation Scheme for Grid-Based Wireless Sensor Networks Minimum Cost Content Object Reconstruction in Multi-tier Servers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1