Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, P. Saxena
{"title":"Preventing Page Faults from Telling Your Secrets","authors":"Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, P. Saxena","doi":"10.1145/2897845.2897885","DOIUrl":null,"url":null,"abstract":"New hardware primitives such as Intel SGX secure a user-level process in presence of an untrusted or compromised OS. Such \"enclaved execution\" systems are vulnerable to several side-channels, one of which is the page fault channel. In this paper, we show that the page fault side-channel has sufficient channel capacity to extract bits of encryption keys from commodity implementations of cryptographic routines in OpenSSL and Libgcrypt -- leaking 27% on average and up to 100% of the secret bits in many case-studies. To mitigate this, we propose a software-only defense that masks page fault patterns by determinising the program's memory access behavior. We show that such a technique can be built into a compiler, and implement it for a subset of C which is sufficient to handle the cryptographic routines we study. This defense when implemented generically can have significant overhead of up to 4000X, but with help of developer-assisted compiler optimizations, the overhead reduces to at most 29.22% in our case studies. Finally, we discuss scope for hardware-assisted defenses, and show one solution that can reduce overheads to 6.77% with support from hardware changes.","PeriodicalId":166633,"journal":{"name":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"204","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897845.2897885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 204
Abstract
New hardware primitives such as Intel SGX secure a user-level process in presence of an untrusted or compromised OS. Such "enclaved execution" systems are vulnerable to several side-channels, one of which is the page fault channel. In this paper, we show that the page fault side-channel has sufficient channel capacity to extract bits of encryption keys from commodity implementations of cryptographic routines in OpenSSL and Libgcrypt -- leaking 27% on average and up to 100% of the secret bits in many case-studies. To mitigate this, we propose a software-only defense that masks page fault patterns by determinising the program's memory access behavior. We show that such a technique can be built into a compiler, and implement it for a subset of C which is sufficient to handle the cryptographic routines we study. This defense when implemented generically can have significant overhead of up to 4000X, but with help of developer-assisted compiler optimizations, the overhead reduces to at most 29.22% in our case studies. Finally, we discuss scope for hardware-assisted defenses, and show one solution that can reduce overheads to 6.77% with support from hardware changes.