Mining maximal frequent itemsets: A java implementation of FPMAX algorithm

B. Ziani, Y. Ouinten
{"title":"Mining maximal frequent itemsets: A java implementation of FPMAX algorithm","authors":"B. Ziani, Y. Ouinten","doi":"10.1109/IIT.2009.5413790","DOIUrl":null,"url":null,"abstract":"Mining maximal frequent itemsets is an important issue in many data mining applications. In our thesis work on selection and tuning of indices in data werhouses, we have proposed a strategy based on mining maximal frequent itemsets in order to determine a set of candidate indices from a given workload. In a first step we have to select an algorithm, for mining maximal frequent itemsets, to implement. Experimental results in the repository of the workshops on Frequent Itemset Mining Implementations (http://fimi.cs.helsinki.fi/), shows that FPMAX has the best performance. Therefore, we have selected it for our own implementation in java language. FPMAX is an extension of FP-Growth method for mining maximal frequent itemsets only. We tested our implementation on two benchmark databases MUSHROOM and RETAIL. We compare our results with the best implementations available in the repository mentioned earlier. Our implementation showed good performances compared with the others. However, the comparison of response times published in FIMI 2004, for the chosen implementations, could not be replicated.","PeriodicalId":239829,"journal":{"name":"2009 International Conference on Innovations in Information Technology (IIT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Innovations in Information Technology (IIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIT.2009.5413790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Mining maximal frequent itemsets is an important issue in many data mining applications. In our thesis work on selection and tuning of indices in data werhouses, we have proposed a strategy based on mining maximal frequent itemsets in order to determine a set of candidate indices from a given workload. In a first step we have to select an algorithm, for mining maximal frequent itemsets, to implement. Experimental results in the repository of the workshops on Frequent Itemset Mining Implementations (http://fimi.cs.helsinki.fi/), shows that FPMAX has the best performance. Therefore, we have selected it for our own implementation in java language. FPMAX is an extension of FP-Growth method for mining maximal frequent itemsets only. We tested our implementation on two benchmark databases MUSHROOM and RETAIL. We compare our results with the best implementations available in the repository mentioned earlier. Our implementation showed good performances compared with the others. However, the comparison of response times published in FIMI 2004, for the chosen implementations, could not be replicated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘最大频繁项集:FPMAX算法的java实现
挖掘最大频繁项集是许多数据挖掘应用中的一个重要问题。在研究数据仓库中索引的选择和调优的论文中,我们提出了一种基于挖掘最大频繁项集的策略,以便从给定的工作负载中确定一组候选索引。在第一步,我们必须选择一个算法,挖掘最大频繁项集,实现。在频繁项集挖掘实现研讨会库(http://fimi.cs.helsinki.fi/)中的实验结果表明,FPMAX具有最佳性能。因此,我们选择它作为我们自己的java语言实现。FPMAX是仅用于挖掘最大频繁项集的FP-Growth方法的扩展。我们在两个基准数据库MUSHROOM和RETAIL上测试了我们的实现。我们将我们的结果与前面提到的存储库中可用的最佳实现进行比较。与其他实现相比,我们的实现显示出良好的性能。然而,对于所选的实现,在FIMI 2004中发布的响应时间比较无法复制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A software development tool for improving Quality of Service in Distributed Database Systems XQPoint: A queriable homomorphic XML compressor Design and simulation of a speech processor for cochlear implant based on Arabic language On popularity quality: Growth and decay phases of publication popularities Impact of applying realistic mobility models on the performance analysis of Internet gateway discovery approaches for Mobile Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1