Graph signal recovery from incomplete and noisy information using approximate message passing

Gita Babazadeh Eslamlou, A. Jung, N. Goertz, M. Fereydooni
{"title":"Graph signal recovery from incomplete and noisy information using approximate message passing","authors":"Gita Babazadeh Eslamlou, A. Jung, N. Goertz, M. Fereydooni","doi":"10.1109/ICASSP.2016.7472863","DOIUrl":null,"url":null,"abstract":"We consider the problem of recovering a graph signal from noisy and incomplete information. In particular, we propose an approximate message passing based iterative method for graph signal recovery. The recovery of the graph signal is based on noisy signal values at a small number of randomly selected nodes. Our approach exploits the smoothness of typical graph signals occurring in many applications, such as wireless sensor networks or social network analysis. The graph signals are smooth in the sense that neighboring nodes have similar signal values. Methodologically, our algorithm is a new instance of the denoising based approximate message passing framework introduced recently by Metzler et. al. We validate the performance of the proposed recovery method via numerical experiments. In certain scenarios our algorithm outperforms existing methods.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider the problem of recovering a graph signal from noisy and incomplete information. In particular, we propose an approximate message passing based iterative method for graph signal recovery. The recovery of the graph signal is based on noisy signal values at a small number of randomly selected nodes. Our approach exploits the smoothness of typical graph signals occurring in many applications, such as wireless sensor networks or social network analysis. The graph signals are smooth in the sense that neighboring nodes have similar signal values. Methodologically, our algorithm is a new instance of the denoising based approximate message passing framework introduced recently by Metzler et. al. We validate the performance of the proposed recovery method via numerical experiments. In certain scenarios our algorithm outperforms existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用近似消息传递从不完全和噪声信息中恢复图形信号
研究了从噪声和不完全信息中恢复图信号的问题。特别地,我们提出了一种基于近似消息传递的迭代图信号恢复方法。图信号的恢复是基于少量随机选择的节点上的噪声信号值。我们的方法利用了许多应用中出现的典型图形信号的平滑性,例如无线传感器网络或社交网络分析。图信号是平滑的,因为相邻节点具有相似的信号值。在方法上,我们的算法是Metzler等人最近引入的基于去噪的近似消息传递框架的新实例。我们通过数值实验验证了所提出的恢复方法的性能。在某些情况下,我们的算法优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1