Biometric identifier based on hand and hand-written signature contour information

Fernando A. Pitters-Figueroa, C. Travieso-González, M. Dutta, Anushikha Singh
{"title":"Biometric identifier based on hand and hand-written signature contour information","authors":"Fernando A. Pitters-Figueroa, C. Travieso-González, M. Dutta, Anushikha Singh","doi":"10.1109/IC3.2017.8284292","DOIUrl":null,"url":null,"abstract":"The present work presents a biometric identifier system using the combination of two different features: hands shape (finger lengths and width) and hand-written signature contour. Signature database contains 300 different signers with 24 signatures and the hand database has 144 owners with 10 images. The study covers three different classifiers: Hidden Markov Models (HMM), Support Vector Machines (SVM) and a combination of both using the Fisher Kernel. Systems are evaluated separately and in conjunction, giving in each case 100% of identification success rate for the combined classifier. The combination of features gives better results when reducing the training set than the independent systems.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The present work presents a biometric identifier system using the combination of two different features: hands shape (finger lengths and width) and hand-written signature contour. Signature database contains 300 different signers with 24 signatures and the hand database has 144 owners with 10 images. The study covers three different classifiers: Hidden Markov Models (HMM), Support Vector Machines (SVM) and a combination of both using the Fisher Kernel. Systems are evaluated separately and in conjunction, giving in each case 100% of identification success rate for the combined classifier. The combination of features gives better results when reducing the training set than the independent systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于手写和手写签名轮廓信息的生物识别识别
本研究提出了一种结合两种不同特征的生物识别系统:手的形状(手指的长度和宽度)和手写的签名轮廓。签名数据库包含300个不同的签名者,有24个签名,手数据库有144个所有者,有10个图像。该研究涵盖了三种不同的分类器:隐马尔可夫模型(HMM),支持向量机(SVM)以及使用Fisher核的两者的组合。系统分别评估和联合评估,在每种情况下,组合分类器的识别成功率为100%。特征组合在约简训练集时比独立系统得到更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clickstream & behavioral analysis with context awareness for e-commercial applications Clustering based minimum spanning tree algorithm Sarcasm detection of tweets: A comparative study Quantum genetic algorithm with rotation angle refinement for dependent task scheduling on distributed systems An approach to maintain attendance using image processing techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1