Fernando A. Pitters-Figueroa, C. Travieso-González, M. Dutta, Anushikha Singh
{"title":"Biometric identifier based on hand and hand-written signature contour information","authors":"Fernando A. Pitters-Figueroa, C. Travieso-González, M. Dutta, Anushikha Singh","doi":"10.1109/IC3.2017.8284292","DOIUrl":null,"url":null,"abstract":"The present work presents a biometric identifier system using the combination of two different features: hands shape (finger lengths and width) and hand-written signature contour. Signature database contains 300 different signers with 24 signatures and the hand database has 144 owners with 10 images. The study covers three different classifiers: Hidden Markov Models (HMM), Support Vector Machines (SVM) and a combination of both using the Fisher Kernel. Systems are evaluated separately and in conjunction, giving in each case 100% of identification success rate for the combined classifier. The combination of features gives better results when reducing the training set than the independent systems.","PeriodicalId":147099,"journal":{"name":"2017 Tenth International Conference on Contemporary Computing (IC3)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Tenth International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2017.8284292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The present work presents a biometric identifier system using the combination of two different features: hands shape (finger lengths and width) and hand-written signature contour. Signature database contains 300 different signers with 24 signatures and the hand database has 144 owners with 10 images. The study covers three different classifiers: Hidden Markov Models (HMM), Support Vector Machines (SVM) and a combination of both using the Fisher Kernel. Systems are evaluated separately and in conjunction, giving in each case 100% of identification success rate for the combined classifier. The combination of features gives better results when reducing the training set than the independent systems.