Multi-codebook Fuzzy Neural Network Using Incremental Learning for Multimodal Data Classification

M. A. Ma'sum, W. Jatmiko
{"title":"Multi-codebook Fuzzy Neural Network Using Incremental Learning for Multimodal Data Classification","authors":"M. A. Ma'sum, W. Jatmiko","doi":"10.1109/ACIRS.2019.8935971","DOIUrl":null,"url":null,"abstract":"One of the challenge in classification is classification in multimodal data. This paper proposed multi-codebook fuzzy neural network by using incremental learning for multimodal data classification. There are 2 variations of the proposed method, one uses a static threshold, and the other uses a dynamic threshold. Based on the experiment result, the multicodebook FNGLVQ using dynamic incremental learning has the highest improvement compared to the original FNGLVQ. It achieves 15.65% margin in synthetic dataset, 5.02 % margin in benchmark dataset, and 11.30% on average all dataset.","PeriodicalId":338050,"journal":{"name":"2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIRS.2019.8935971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the challenge in classification is classification in multimodal data. This paper proposed multi-codebook fuzzy neural network by using incremental learning for multimodal data classification. There are 2 variations of the proposed method, one uses a static threshold, and the other uses a dynamic threshold. Based on the experiment result, the multicodebook FNGLVQ using dynamic incremental learning has the highest improvement compared to the original FNGLVQ. It achieves 15.65% margin in synthetic dataset, 5.02 % margin in benchmark dataset, and 11.30% on average all dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增量学习的多码本模糊神经网络多模态数据分类
多模态数据的分类是分类的难点之一。本文提出了一种基于增量学习的多码本模糊神经网络,用于多模态数据分类。提出的方法有两种变体,一种使用静态阈值,另一种使用动态阈值。实验结果表明,采用动态增量学习的多码本FNGLVQ比原始的FNGLVQ有最高的改进。在合成数据集上达到15.65%的边际,在基准数据集上达到5.02%的边际,在所有数据集上平均达到11.30%的边际。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low Cost DFS-based Approach for Detection Speedup Decision Behavioral Approach for Self Organizing Multi Agent Robots Based on Deep Neural Network Comparison of MARG Sensor Results for Different Mounting Positions and Physiques for Accurate Knee Joint Motion Measurement Two-Degree-of-Freedom Control of Flexible Manipulator Using Adaptive Notch Filter and Strain Feedback Adaptive Symmetrical Virtual Keyboard Based on EOG Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1