Real-Time Object Detection for 360-Degree Panoramic Image Using CNN

Yiming Zhang, Xiangyun Xiao, Xubo Yang
{"title":"Real-Time Object Detection for 360-Degree Panoramic Image Using CNN","authors":"Yiming Zhang, Xiangyun Xiao, Xubo Yang","doi":"10.1109/ICVRV.2017.00013","DOIUrl":null,"url":null,"abstract":"The object detection for 360-degree panoramic images is widely applied in many areas such as automatic driving, navigation of drones and driving assistance. Most of state-of-the-art approaches for detecting objects in ordinary images cannot work well on the object detection for 360-degree panoramic images. As a 360-degree panoramic image can be considered as a 2D image which is the result of a 360-degree panoramic sphere being expanded along the longitude line, objects in it will be twisted or divided apart and the detection will be more difficult. In this paper, we present a real-time object detection system for 360-degree panoramic images using convolutional neural network (CNN). We adopt a CNN-based detection framework for object detection with a post-processing stage to fine-tune the result. Additionally, we propose a novel method to reuse those exisiting datasets of ordinary images, e.g., the ImageNet and PASCAL VOC, in the object detection for 360-degree panoramic images. We will demonstrate with several examples that our method yields higher accuracy and recall rate than traditional methods in object detection for 360-degree panoramic images.","PeriodicalId":187934,"journal":{"name":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Virtual Reality and Visualization (ICVRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRV.2017.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The object detection for 360-degree panoramic images is widely applied in many areas such as automatic driving, navigation of drones and driving assistance. Most of state-of-the-art approaches for detecting objects in ordinary images cannot work well on the object detection for 360-degree panoramic images. As a 360-degree panoramic image can be considered as a 2D image which is the result of a 360-degree panoramic sphere being expanded along the longitude line, objects in it will be twisted or divided apart and the detection will be more difficult. In this paper, we present a real-time object detection system for 360-degree panoramic images using convolutional neural network (CNN). We adopt a CNN-based detection framework for object detection with a post-processing stage to fine-tune the result. Additionally, we propose a novel method to reuse those exisiting datasets of ordinary images, e.g., the ImageNet and PASCAL VOC, in the object detection for 360-degree panoramic images. We will demonstrate with several examples that our method yields higher accuracy and recall rate than traditional methods in object detection for 360-degree panoramic images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于CNN的360度全景图像实时目标检测
360度全景图像的目标检测在自动驾驶、无人机导航、驾驶辅助等领域有着广泛的应用。对于360度全景图像的目标检测,大多数现有的普通图像目标检测方法都不能很好地发挥作用。由于360度全景图像可以看作是二维图像,是360度全景球体沿经线展开的结果,其中的物体会发生扭曲或分裂,检测难度较大。在本文中,我们提出了一种基于卷积神经网络(CNN)的360度全景图像实时目标检测系统。我们采用基于cnn的检测框架进行目标检测,并通过后处理阶段对结果进行微调。此外,我们提出了一种新的方法来重用现有的普通图像数据集,如ImageNet和PASCAL VOC,用于360度全景图像的目标检测。我们将用几个例子来证明,我们的方法在360度全景图像的目标检测中比传统方法产生更高的准确率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Feature-Enhanced Surfaces from Incomplete Point Cloud with Segmentation and Curve Skeleton Information Efficiently Disassemble-and-Pack for Mechanism Surface Flattening Based on Energy Fabric Deformation Model in Garment Design A Novel Intelligent Thyroid Nodule Diagnosis System over Ultrasound Images Based on Deep Learning A Novel Reconstruction Method of 3D Heart Geometry Atlas Based on Visible Human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1