Devito: Towards a Generic Finite Difference DSL Using Symbolic Python

Michael Lange, Navjot Kukreja, M. Louboutin, F. Luporini, Felippe Vieira, Vincenzo Pandolfo, Paulius Velesko, Paulius Kazakas, G. Gorman
{"title":"Devito: Towards a Generic Finite Difference DSL Using Symbolic Python","authors":"Michael Lange, Navjot Kukreja, M. Louboutin, F. Luporini, Felippe Vieira, Vincenzo Pandolfo, Paulius Velesko, Paulius Kazakas, G. Gorman","doi":"10.1109/PYHPC.2016.9","DOIUrl":null,"url":null,"abstract":"Domain specific languages (DSL) have been used in a variety of fields to express complex scientific problems in a concise manner and provide automated performance optimization for a range of computational architectures. As such DSLs provide a powerful mechanism to speed up scientific Python computation that goes beyond traditional vectorization and pre-compilation approaches, while allowing domain scientists to build applications within the comforts of the Python software ecosystem. In this paper we present Devito, a new finite difference DSL that provides optimized stencil computation from high-level problem specifications based on symbolic Python expressions. We demonstrate Devito's symbolic API and performance advantages over traditional Python acceleration methods before highlighting its use in the scientific context of seismic inversion problems.","PeriodicalId":178771,"journal":{"name":"2016 6th Workshop on Python for High-Performance and Scientific Computing (PyHPC)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th Workshop on Python for High-Performance and Scientific Computing (PyHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PYHPC.2016.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Domain specific languages (DSL) have been used in a variety of fields to express complex scientific problems in a concise manner and provide automated performance optimization for a range of computational architectures. As such DSLs provide a powerful mechanism to speed up scientific Python computation that goes beyond traditional vectorization and pre-compilation approaches, while allowing domain scientists to build applications within the comforts of the Python software ecosystem. In this paper we present Devito, a new finite difference DSL that provides optimized stencil computation from high-level problem specifications based on symbolic Python expressions. We demonstrate Devito's symbolic API and performance advantages over traditional Python acceleration methods before highlighting its use in the scientific context of seismic inversion problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Devito:用符号Python实现一般有限差分DSL
领域特定语言(DSL)已被用于各种领域,以简洁的方式表达复杂的科学问题,并为一系列计算体系结构提供自动性能优化。因此,dsl提供了一种强大的机制来加速科学Python计算,超越了传统的向量化和预编译方法,同时允许领域科学家在舒适的Python软件生态系统中构建应用程序。在本文中,我们提出了Devito,一个新的有限差分DSL,它提供了基于符号Python表达式的高级问题规范的优化模板计算。在强调其在地震反演问题的科学背景下的使用之前,我们演示了Devito的符号API和优于传统Python加速方法的性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Migrating Legacy Fortran to Python While Retaining Fortran-Level Performance through Transpilation and Type Hints Boosting Python Performance on Intel Processors: A Case Study of Optimizing Music Recognition PALLADIO: A Parallel Framework for Robust Variable Selection in High-Dimensional Data Dynamic Provisioning and Execution of HPC Workflows Using Python Mrs: High Performance MapReduce for Iterative and Asynchronous Algorithms in Python
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1