{"title":"A multi-scale investigation of ecologically relevant effects of agricultural runoff on amphibians","authors":"B. Williams","doi":"10.32469/10355/6641","DOIUrl":null,"url":null,"abstract":"Low levels of agricultural herbicides often contaminate surface water and may persist throughout the growing season, potentially acting as stressors on aquatic organisms. Although low-dose, chronic exposures to agrochemicals are likely common for many non-target organisms, studies addressing these effects using end-use herbicide formulations are rare. We exposed three common species of tadpoles to conservative levels of atrazine, S-metolachlor, and glyphosate end-use herbicide formulations throughout the larval period to test for survival differences or life history trait alterations. Exposure to the glyphosate product Roundup WeatherMax® at 572 ppb glyphosate acid equivalents (a.e.) resulted in 80% mortality of western chorus frog tadpoles, likely as a result of a unique surfactant formulation. Exposure to WeatherMax® or Roundup Original Max® at 572 ppb a.e. also lengthened the larval period for American toads. Chronic atrazine and S-metolachlor exposures induced no significant negative effects on survival, mass at metamorphosis or larval period length at the levels tested. These results highlight the importance of explicitly tying chronic tests to the natural environment and considering contributions of surfactant/adjuvant components to end-use formulation toxicities, even between very similar products.","PeriodicalId":285769,"journal":{"name":"Submitted by the University of Missouri--Columbia Graduate School","volume":"233 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Submitted by the University of Missouri--Columbia Graduate School","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32469/10355/6641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Low levels of agricultural herbicides often contaminate surface water and may persist throughout the growing season, potentially acting as stressors on aquatic organisms. Although low-dose, chronic exposures to agrochemicals are likely common for many non-target organisms, studies addressing these effects using end-use herbicide formulations are rare. We exposed three common species of tadpoles to conservative levels of atrazine, S-metolachlor, and glyphosate end-use herbicide formulations throughout the larval period to test for survival differences or life history trait alterations. Exposure to the glyphosate product Roundup WeatherMax® at 572 ppb glyphosate acid equivalents (a.e.) resulted in 80% mortality of western chorus frog tadpoles, likely as a result of a unique surfactant formulation. Exposure to WeatherMax® or Roundup Original Max® at 572 ppb a.e. also lengthened the larval period for American toads. Chronic atrazine and S-metolachlor exposures induced no significant negative effects on survival, mass at metamorphosis or larval period length at the levels tested. These results highlight the importance of explicitly tying chronic tests to the natural environment and considering contributions of surfactant/adjuvant components to end-use formulation toxicities, even between very similar products.