{"title":"Comparison of Technical and Economic Properties of Additively Manufactured Components Using Masked Stereolithography and Fused Layer Modeling","authors":"S. Junk, Felix Bär","doi":"10.1115/iam2022-94087","DOIUrl":null,"url":null,"abstract":"\n Additive manufacturing with plastics enables the production of lightweight and resilient components with a high degree of design freedom. In the low-cost sector, Material Extrusion as Fused Layer Modeling (FLM) has so far been the leading method, as it offers simple 3D printers and a variety of inexpensive 3D materials. However, printing times for 6FLM are very long and dimensional accuracy and surface finish are rather poor. Recently, new processes from the field of Vat Polymerization have appeared on the market, such as masked Stereolithography (mSLA), which offer a significant improvement in component quality and build speed at equally favorable machine costs.\n This paper therefore analyzes the technical and economic capabilities of the two competing additive processes. For this purpose, the achievable dimensional and surface qualities are determined using a test specimen which represents various important geometry elements. In addition, the machine and material costs are determined and compared with each other. Finally, the resulting environmental impact is determined in the form of the CO2 footprint. In order to optimize the strength of the printed components, material properties of the tensile specimens produced additively with mSLA are determined. The use of ABS-like resins will also be investigated to determine optimal processing settings.","PeriodicalId":184278,"journal":{"name":"2022 International Additive Manufacturing Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Additive Manufacturing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iam2022-94087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing with plastics enables the production of lightweight and resilient components with a high degree of design freedom. In the low-cost sector, Material Extrusion as Fused Layer Modeling (FLM) has so far been the leading method, as it offers simple 3D printers and a variety of inexpensive 3D materials. However, printing times for 6FLM are very long and dimensional accuracy and surface finish are rather poor. Recently, new processes from the field of Vat Polymerization have appeared on the market, such as masked Stereolithography (mSLA), which offer a significant improvement in component quality and build speed at equally favorable machine costs.
This paper therefore analyzes the technical and economic capabilities of the two competing additive processes. For this purpose, the achievable dimensional and surface qualities are determined using a test specimen which represents various important geometry elements. In addition, the machine and material costs are determined and compared with each other. Finally, the resulting environmental impact is determined in the form of the CO2 footprint. In order to optimize the strength of the printed components, material properties of the tensile specimens produced additively with mSLA are determined. The use of ABS-like resins will also be investigated to determine optimal processing settings.