Machine Learning Classification of Neuropsychiatric Systemic Lupus Erythematosus patients using resting-state fMRI functional connectivity

N. Simos, Georgios C. Manikis, E. Papadaki, E. Kavroulakis, G. Bertsias, K. Marias
{"title":"Machine Learning Classification of Neuropsychiatric Systemic Lupus Erythematosus patients using resting-state fMRI functional connectivity","authors":"N. Simos, Georgios C. Manikis, E. Papadaki, E. Kavroulakis, G. Bertsias, K. Marias","doi":"10.1109/IST48021.2019.9010078","DOIUrl":null,"url":null,"abstract":"In this study we explored the robustness of machine learning algorithms for the classification of Neuropsychiatric systemic lupus erythematosus (NPSLE) patients and healthy controls using resting-state fMRI functional connectivity matrices. NPSLE, which is driven by systemic autoimmune inflammation in the context of lupus, involves a wide range of focal and diffuse central and peripheral nervous system symptoms and poses significant diagnostic challenges. Machine learning applications on clinical data may enhance the existing workflow for NPSLE classification as there is no established method of applying neuroimaging data to the diagnosis of NPSLE. Feature selection methods were applied prior to the classification process in order to perform the classification process on a lower dimension feature space. The Connectivity Matrix used consisted of pairwise regional functional associations of the fMRI signals (ROI to ROI correlations) within each of three predetermined brain networks in 41 NPSLE patients and 31 healthy control subjects. Support Vector Machines (SVM) was utilized in the final model. Results were evaluated using a nested cross validation methodology to prevent overfitting, and enhance generalization. Regions of Interest (ROI's) that contributed most in the final model were: Right Inferior Temporal, Thalamus, Left Angular Gyrus, Right Precuneus, Left Primary Motor Cortex, SMA, Left and Right Primary Motor Cortex. With a final F1 score of up to 77%, the results demonstrate the potential for the future implementation of similar methods in the diagnosis of NPSLE.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this study we explored the robustness of machine learning algorithms for the classification of Neuropsychiatric systemic lupus erythematosus (NPSLE) patients and healthy controls using resting-state fMRI functional connectivity matrices. NPSLE, which is driven by systemic autoimmune inflammation in the context of lupus, involves a wide range of focal and diffuse central and peripheral nervous system symptoms and poses significant diagnostic challenges. Machine learning applications on clinical data may enhance the existing workflow for NPSLE classification as there is no established method of applying neuroimaging data to the diagnosis of NPSLE. Feature selection methods were applied prior to the classification process in order to perform the classification process on a lower dimension feature space. The Connectivity Matrix used consisted of pairwise regional functional associations of the fMRI signals (ROI to ROI correlations) within each of three predetermined brain networks in 41 NPSLE patients and 31 healthy control subjects. Support Vector Machines (SVM) was utilized in the final model. Results were evaluated using a nested cross validation methodology to prevent overfitting, and enhance generalization. Regions of Interest (ROI's) that contributed most in the final model were: Right Inferior Temporal, Thalamus, Left Angular Gyrus, Right Precuneus, Left Primary Motor Cortex, SMA, Left and Right Primary Motor Cortex. With a final F1 score of up to 77%, the results demonstrate the potential for the future implementation of similar methods in the diagnosis of NPSLE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经精神系统红斑狼疮患者静息状态fMRI功能连接的机器学习分类
在这项研究中,我们探索了机器学习算法在使用静息状态fMRI功能连接矩阵对神经精神系统性红斑狼疮(NPSLE)患者和健康对照进行分类方面的鲁棒性。NPSLE是由狼疮背景下的系统性自身免疫性炎症驱动的,涉及广泛的局灶性和弥漫性中枢和周围神经系统症状,并提出了重大的诊断挑战。机器学习在临床数据上的应用可能会增强现有的NPSLE分类工作流程,因为目前还没有将神经影像学数据应用于NPSLE诊断的既定方法。在分类过程之前采用特征选择方法,以便在较低维特征空间上执行分类过程。使用的连通性矩阵包括41例NPSLE患者和31名健康对照者的三个预定脑网络中fMRI信号的两两区域功能关联(ROI与ROI相关性)。最终模型采用支持向量机(SVM)。使用嵌套交叉验证方法评估结果,以防止过拟合,并增强泛化。在最终模型中贡献最大的兴趣区(ROI’s)是:右侧颞下区、丘脑、左侧角回、右侧楔前叶、左侧初级运动皮质、SMA、左右初级运动皮质。最终F1得分高达77%,结果显示了未来在NPSLE诊断中实施类似方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Adversarially Enhanced Heatmaps for Aorta Segmentation in CTA Millimeter Wave Imaging of Surface Defects and Corrosion under Paint using V-band Reflectometer An Efficient Human Activity Recognition Framework Based on Wearable IMU Wrist Sensors Retinal Layers OCT Scans 3-D Segmentation Identifying Asthma genetic signature patterns by mining Gene Expression BIG Datasets using Image Filtering Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1