Object detection via receptive field co-occurrence and spatial cloud-point data

Luis Contreras, Abel Pacheco-Ortega, Jose I. Figueroa, W. Mayol-Cuevas, J. Savage
{"title":"Object detection via receptive field co-occurrence and spatial cloud-point data","authors":"Luis Contreras, Abel Pacheco-Ortega, Jose I. Figueroa, W. Mayol-Cuevas, J. Savage","doi":"10.1109/ICAR.2013.6766575","DOIUrl":null,"url":null,"abstract":"The use of image and spatial information together in mobile robots systems it is a promising field, due to the enhanced level of discrimination and efficiency that can be gained. In this paper we employ an RGB-D camera for object detection and clustering and develop methods that combine the two strands of information: first we cluster potential objects by means of their spatial position and then link geometry and co-occurrence histograms to enable reliable object detection. Experiments and design parameters are presented for example scenarios of object detection under clutter.","PeriodicalId":437814,"journal":{"name":"2013 16th International Conference on Advanced Robotics (ICAR)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 16th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2013.6766575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of image and spatial information together in mobile robots systems it is a promising field, due to the enhanced level of discrimination and efficiency that can be gained. In this paper we employ an RGB-D camera for object detection and clustering and develop methods that combine the two strands of information: first we cluster potential objects by means of their spatial position and then link geometry and co-occurrence histograms to enable reliable object detection. Experiments and design parameters are presented for example scenarios of object detection under clutter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过感受野共现和空间云点数据进行目标检测
在移动机器人系统中使用图像和空间信息是一个很有前途的领域,因为可以获得更高的识别水平和效率。在本文中,我们使用RGB-D相机进行目标检测和聚类,并开发了结合两股信息的方法:首先我们通过空间位置对潜在目标进行聚类,然后将几何形状和共现直方图联系起来,以实现可靠的目标检测。给出了杂波条件下目标检测的实验和设计参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive robot learning of visuospatial skills A variable stiffness mechanism for improving energy efficiency of a planar single-legged hopping robot Monocular navigation for long-term autonomy External localization system for mobile robotics Software-aided design of robotic mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1