{"title":"Aggregate Queries on Sparse Databases","authors":"Szymon Toruńczyk","doi":"10.1145/3375395.3387660","DOIUrl":null,"url":null,"abstract":"We propose an algebraic framework for studying efficient algorithms for query evaluation, aggregation, enumeration, and maintenance under updates, on sparse databases. Our framework allows to treat those problems in a unified way, by considering various semirings, depending on the considered problem. As a concrete application, we propose a powerful query language extending first-order logic by aggregation in multiple semirings. We obtain an optimal algorithm for computing the answers of such queries on sparse databases. More precisely, given a database from a fixed class with bounded expansion, the algorithm computes in linear timea data structure which allows to enumerate the set of answers to the query, with constant delay between two outputs.","PeriodicalId":412441,"journal":{"name":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375395.3387660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We propose an algebraic framework for studying efficient algorithms for query evaluation, aggregation, enumeration, and maintenance under updates, on sparse databases. Our framework allows to treat those problems in a unified way, by considering various semirings, depending on the considered problem. As a concrete application, we propose a powerful query language extending first-order logic by aggregation in multiple semirings. We obtain an optimal algorithm for computing the answers of such queries on sparse databases. More precisely, given a database from a fixed class with bounded expansion, the algorithm computes in linear timea data structure which allows to enumerate the set of answers to the query, with constant delay between two outputs.