Satellite Formation Flying and Rendezvous

S. D’Amico, J. Carpenter
{"title":"Satellite Formation Flying and Rendezvous","authors":"S. D’Amico, J. Carpenter","doi":"10.1002/9781119458555.ch63","DOIUrl":null,"url":null,"abstract":"GNSS has come to play an increasingly important role in satellite formation-flying and rendezvous applications. In the last decades, the use of GNSS measurements has provided the primary method for determining the relative position of cooperative satellites in low Earth orbit. More recently, GNSS data have been successfully used to perform formation-flying in highly elliptical orbits with apogees at tens of Earth radii well above the GNSS constellations. Current research aims at distributed precise relative navigation between tens of swarming nanoand micro-satellites based on GNSS. Similar to terrestrial applications, GNSS relative navigation benefits from a high level of common error cancellation. Furthermore, the integer nature of carrier phase ambiguities can be exploited in carrier phase differential GNSS (CDGNSS). Both aspects enable a substantially higher accuracy in the estimation of the relative motion than can be achieved in single-spacecraft navigation. Following historical remarks and an overview of the state-of-the-art, this chapter addresses the technology and main techniques used for spaceborne relative navigation both for real-time and offline applications. Flight results from missions such as the Space Shuttle, PRISMA, TanDEM-X, and MMS are presented to demonstrate the versatility and broad range of applicability of GNSS relative navigation, from precise baseline determination on-ground (mm-level accuracy), to coarse real-time estimation on-board (mto cm-level accuracy).","PeriodicalId":265266,"journal":{"name":"Position, Navigation, and Timing Technologies in the 21st Century","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Position, Navigation, and Timing Technologies in the 21st Century","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119458555.ch63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

GNSS has come to play an increasingly important role in satellite formation-flying and rendezvous applications. In the last decades, the use of GNSS measurements has provided the primary method for determining the relative position of cooperative satellites in low Earth orbit. More recently, GNSS data have been successfully used to perform formation-flying in highly elliptical orbits with apogees at tens of Earth radii well above the GNSS constellations. Current research aims at distributed precise relative navigation between tens of swarming nanoand micro-satellites based on GNSS. Similar to terrestrial applications, GNSS relative navigation benefits from a high level of common error cancellation. Furthermore, the integer nature of carrier phase ambiguities can be exploited in carrier phase differential GNSS (CDGNSS). Both aspects enable a substantially higher accuracy in the estimation of the relative motion than can be achieved in single-spacecraft navigation. Following historical remarks and an overview of the state-of-the-art, this chapter addresses the technology and main techniques used for spaceborne relative navigation both for real-time and offline applications. Flight results from missions such as the Space Shuttle, PRISMA, TanDEM-X, and MMS are presented to demonstrate the versatility and broad range of applicability of GNSS relative navigation, from precise baseline determination on-ground (mm-level accuracy), to coarse real-time estimation on-board (mto cm-level accuracy).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卫星编队飞行和会合
GNSS在卫星编队飞行和交会应用中发挥着越来越重要的作用。在过去几十年中,全球导航卫星系统测量的使用为确定低地球轨道上合作卫星的相对位置提供了主要方法。最近,GNSS数据已成功地用于在高椭圆轨道上进行编队飞行,远地点位于GNSS星座上方数十个地球半径处。目前的研究方向是基于GNSS的数十颗微纳卫星群之间的分布式精确相对导航。与地面应用类似,GNSS相对导航得益于高水平的常见误差消除。此外,载波相位模糊的整数性质可以在载波相位差分GNSS (CDGNSS)中得到利用。这两个方面都使相对运动估计的精度大大高于单航天器导航。在回顾历史和概述最新技术之后,本章讨论了用于实时和离线应用的星载相对导航的技术和主要技术。来自航天飞机、PRISMA、TanDEM-X和MMS等任务的飞行结果展示了GNSS相对导航的多功能性和广泛适用性,从精确的地面基线确定(毫米级精度)到粗糙的机载实时估计(毫米级精度)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GNSS Receiver Signal Tracking Navigation from Low‐Earth Orbit Assisted GNSS Overview of Volume 2 Global Geodesy and Reference Frames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1