Trajectory-Based Dynamic Handwriting Recognition Using Fusion Neural Network

Tzu-An Huang, Sai-Keung Wong, Lan-Da Van
{"title":"Trajectory-Based Dynamic Handwriting Recognition Using Fusion Neural Network","authors":"Tzu-An Huang, Sai-Keung Wong, Lan-Da Van","doi":"10.1109/TAAI54685.2021.00011","DOIUrl":null,"url":null,"abstract":"We propose a fusion network model for handwriting recognition. The model consists of a feedforward fully connected neural network (FNN) and a convolutional neural network (CNN). For a given handwriting trajectory, we generate two types of inputs for the FNN and CNN networks, respectively. Each of the networks produces a confidence vector for a handwriting trajectory. Subsequently, the fused result is the element-wise product of the two confidence vectors. We evaluated the proposed fusion network on two data sets, namely RTD and 6DMG, which contain alphabetic and numeric handwriting data. Five-fold cross validation was adopted. The average accuracy of our fusion network achieved 99.77% on the alphabetic data and 99.83% on the numeric data of the 6DMG data set, and 99.61% on the RTD data set. Finally, we compared the fusion network with three state-of-the-art techniques.","PeriodicalId":343821,"journal":{"name":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI54685.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a fusion network model for handwriting recognition. The model consists of a feedforward fully connected neural network (FNN) and a convolutional neural network (CNN). For a given handwriting trajectory, we generate two types of inputs for the FNN and CNN networks, respectively. Each of the networks produces a confidence vector for a handwriting trajectory. Subsequently, the fused result is the element-wise product of the two confidence vectors. We evaluated the proposed fusion network on two data sets, namely RTD and 6DMG, which contain alphabetic and numeric handwriting data. Five-fold cross validation was adopted. The average accuracy of our fusion network achieved 99.77% on the alphabetic data and 99.83% on the numeric data of the 6DMG data set, and 99.61% on the RTD data set. Finally, we compared the fusion network with three state-of-the-art techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于轨迹的融合神经网络动态手写识别
提出了一种用于手写识别的融合网络模型。该模型由前馈全连接神经网络(FNN)和卷积神经网络(CNN)组成。对于给定的手写轨迹,我们分别为FNN和CNN网络生成两种类型的输入。每个网络都会产生笔迹轨迹的置信向量。随后,融合结果是两个置信向量的逐元素积。我们在包含字母和数字笔迹数据的RTD和6DMG两个数据集上对所提出的融合网络进行了评估。采用五重交叉验证。6DMG数据集的字母数据和数字数据的平均准确率分别达到99.77%和99.83%,RTD数据集的平均准确率达到99.61%。最后,我们将融合网络与三种最新技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Random Forests and Decision Trees to Predict Viewing Game Live Streaming via Viewers’ Comments [Title page iii] An Automatic Response System based on Multi-layer Perceptual Neural Network and Web Crawler MLNN: A Novel Network Intrusion Detection Based on Multilayer Neural Network A Hybrid Deep Learning Network for Long-Term Travel Time Prediction in Freeways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1