CNetA: Network alignment by combining biological and topological features

Qiang Huang, Ling-Yun Wu, Xiang-Sun Zhang
{"title":"CNetA: Network alignment by combining biological and topological features","authors":"Qiang Huang, Ling-Yun Wu, Xiang-Sun Zhang","doi":"10.1109/ISB.2012.6314140","DOIUrl":null,"url":null,"abstract":"Due to the rapid progress of high-throughput techniques in past decade, a lot of biomolecular networks are constructed and collected in various databases. However, the biological functional annotations to networks do not keep up with the pace. Network alignment is a fundamental and important bioinformatics approach for predicting functional annotations and discovering conserved functional modules. Although many methods were developed to address the network alignment problem, it is not solved satisfactorily. In this paper, we propose a novel network alignment method called CNetA, which is based on the conditional random field model. The new method is compared with other four methods on three real protein-protein interaction (PPI) network pairs by using four structural and five biological criteria. Compared with structure-dominated methods, larger biological conserved subnetworks are found, while compared with the node-dominated methods, larger connected subnetworks are found. In a word, CNetA preferably balances the biological and topological similarities.","PeriodicalId":224011,"journal":{"name":"2012 IEEE 6th International Conference on Systems Biology (ISB)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 6th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2012.6314140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Due to the rapid progress of high-throughput techniques in past decade, a lot of biomolecular networks are constructed and collected in various databases. However, the biological functional annotations to networks do not keep up with the pace. Network alignment is a fundamental and important bioinformatics approach for predicting functional annotations and discovering conserved functional modules. Although many methods were developed to address the network alignment problem, it is not solved satisfactorily. In this paper, we propose a novel network alignment method called CNetA, which is based on the conditional random field model. The new method is compared with other four methods on three real protein-protein interaction (PPI) network pairs by using four structural and five biological criteria. Compared with structure-dominated methods, larger biological conserved subnetworks are found, while compared with the node-dominated methods, larger connected subnetworks are found. In a word, CNetA preferably balances the biological and topological similarities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNetA:结合生物和拓扑特征的网络对齐
近十年来,由于高通量技术的快速发展,大量的生物分子网络被构建并收集到各种数据库中。然而,对网络的生物学功能注释却没有跟上发展的步伐。网络比对是预测功能注释和发现保守功能模块的基本和重要的生物信息学方法。尽管人们开发了许多方法来解决网络对准问题,但都没有得到满意的解决。本文提出了一种新的基于条件随机场模型的网络对齐方法CNetA。用4个结构标准和5个生物学标准对3个真实蛋白-蛋白相互作用(PPI)网络对进行了比较。与结构主导方法相比,发现了更大的生物保守子网络,而与节点主导方法相比,发现了更大的连接子网络。总之,CNetA很好地平衡了生物和拓扑的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A fixed-point blind source extraction algorithm and its application to ECG data analysis Comparing two models based on the transcriptional regulation by KaiC of cyanobacteria rhythm Predicting protein complexes via the integration of multiple biological information Effective clustering of microRNA sequences by N-grams and feature weighting RNA-seq coverage effects on biological pathways and GO tag clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1