Investigation on the use of Artificial Neural Network Equalizer in Indoor Visible Light Communication Systems

E. Ertunc, Othman Isam Younus, E. Ciaramella, Zabih Ghassemlooy
{"title":"Investigation on the use of Artificial Neural Network Equalizer in Indoor Visible Light Communication Systems","authors":"E. Ertunc, Othman Isam Younus, E. Ciaramella, Zabih Ghassemlooy","doi":"10.1109/CSNDSP54353.2022.9908051","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a non-line-of-sight visible light communication system with the artificial neural network (ANN)-based equalizer that uses the machine learning algorithm Levenberg-Marquardt (LM). We investigate the system performance in terms of the bit error rate for 2-, 4-, 8-, 16-, 32-of pulse amplitude modulation (PAM) scheme using an ANN-based equalizer with 4, 5, 10, 17, and 20 hidden neurons that are optimized. The signal to noise ratio (SNR) penalties are below 10 dB at a bit error rate of $10^{-4}$, which is below the 7% forward error correction limit of $3.8 \\times 10^{-3}$. We also compare the LM algorithm over Broyden-Fletcher-Goldfarb-Shanno) quasi-newton, resilient backpropagation, and gradient descent backpropagation. LM offers the best result with a 7 dB SNR penalty at a BER of $2\\times 10^{-4}$. Lastly, a 1 Mbit/s 4-PAM lin with an ANN-based equalizer with 5 hidden neurons is demonstrated over transmission distances of 1, 3, and 6 m is performed, with the lowest SNR penalty of 0.5 dB for the 1 m link.","PeriodicalId":288069,"journal":{"name":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP54353.2022.9908051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate a non-line-of-sight visible light communication system with the artificial neural network (ANN)-based equalizer that uses the machine learning algorithm Levenberg-Marquardt (LM). We investigate the system performance in terms of the bit error rate for 2-, 4-, 8-, 16-, 32-of pulse amplitude modulation (PAM) scheme using an ANN-based equalizer with 4, 5, 10, 17, and 20 hidden neurons that are optimized. The signal to noise ratio (SNR) penalties are below 10 dB at a bit error rate of $10^{-4}$, which is below the 7% forward error correction limit of $3.8 \times 10^{-3}$. We also compare the LM algorithm over Broyden-Fletcher-Goldfarb-Shanno) quasi-newton, resilient backpropagation, and gradient descent backpropagation. LM offers the best result with a 7 dB SNR penalty at a BER of $2\times 10^{-4}$. Lastly, a 1 Mbit/s 4-PAM lin with an ANN-based equalizer with 5 hidden neurons is demonstrated over transmission distances of 1, 3, and 6 m is performed, with the lowest SNR penalty of 0.5 dB for the 1 m link.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工神经网络均衡器在室内可见光通信系统中的应用研究
在本文中,我们研究了一种基于人工神经网络(ANN)均衡器的非视距可见光通信系统,该系统使用机器学习算法Levenberg-Marquardt (LM)。我们从误码率的角度研究了2、4、8、16、32位脉冲幅度调制(PAM)方案的系统性能,使用基于人工神经网络的均衡器,优化了4、5、10、17和20个隐藏神经元。在误码率为$10^{-4}$的情况下,信噪比(SNR)惩罚低于10 dB,低于7%的前向纠错限制$3.8 \乘以10^{-3}$。我们还比较了LM算法在Broyden-Fletcher-Goldfarb-Shanno)准牛顿、弹性反向传播和梯度下降反向传播上的性能。LM提供了最好的结果,在2\乘以10^{-4}$的误码率下,信噪比损失为7 dB。最后,在传输距离为1,3,6 m的情况下,演示了具有5个隐藏神经元的基于人工神经网络均衡器的1 Mbit/s 4-PAM lin,在1 m链路上的信噪比最低为0.5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Visible Light Positioning with MSE Inner Loop for Underwater Environment Fibre Optics Biosensors for the Detection of Bacteria – a review Experimental characterization of sub-pixel underwater optical camera communications Energy aware routing protocol for sparse underwater acoustic wireless sensor network iDAM: A Distributed MUD Framework for Mitigation of Volumetric Attacks in IoT Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1