Grayscale Image Segmentation With Quantum-Inspired Multilayer Self-Organizing Neural Network Architecture Endorsed by Context Sensitive Thresholding

Pankaj Pal, S. Bhattacharyya, Nishtha Agrawal
{"title":"Grayscale Image Segmentation With Quantum-Inspired Multilayer Self-Organizing Neural Network Architecture Endorsed by Context Sensitive Thresholding","authors":"Pankaj Pal, S. Bhattacharyya, Nishtha Agrawal","doi":"10.4018/978-1-5225-5219-2.CH005","DOIUrl":null,"url":null,"abstract":"A method for grayscale image segmentation is presented using a quantum-inspired self-organizing neural network architecture by proper selection of the threshold values of the multilevel sigmoidal activation function (MUSIG). The context-sensitive threshold values in the different positions of the image are measured based on the homogeneity of the image content and used to extract the object by means of effective thresholding of the multilevel sigmoidal activation function guided by the quantum superposition principle. The neural network architecture uses fuzzy theoretic concepts to assist in the segmentation process. The authors propose a grayscale image segmentation method endorsed by context-sensitive thresholding technique. This quantum-inspired multilayer neural network is adapted with self-organization. The architecture ensures the segmentation process for the real-life images as well as synthetic images by selecting intensity parameter as the threshold value.","PeriodicalId":443838,"journal":{"name":"Research Anthology on Advancements in Quantum Technology","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Advancements in Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-5219-2.CH005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A method for grayscale image segmentation is presented using a quantum-inspired self-organizing neural network architecture by proper selection of the threshold values of the multilevel sigmoidal activation function (MUSIG). The context-sensitive threshold values in the different positions of the image are measured based on the homogeneity of the image content and used to extract the object by means of effective thresholding of the multilevel sigmoidal activation function guided by the quantum superposition principle. The neural network architecture uses fuzzy theoretic concepts to assist in the segmentation process. The authors propose a grayscale image segmentation method endorsed by context-sensitive thresholding technique. This quantum-inspired multilayer neural network is adapted with self-organization. The architecture ensures the segmentation process for the real-life images as well as synthetic images by selecting intensity parameter as the threshold value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于上下文敏感阈值的量子启发多层自组织神经网络灰度图像分割
提出了一种基于量子启发的自组织神经网络结构的灰度图像分割方法,该方法通过合理选择多级s型激活函数(MUSIG)的阈值进行灰度图像分割。基于图像内容的均匀性,测量图像不同位置的上下文敏感阈值,利用量子叠加原理指导的多层s型激活函数的有效阈值提取目标。神经网络架构使用模糊理论概念来辅助分割过程。作者提出了一种基于上下文敏感阈值技术的灰度图像分割方法。这种量子启发的多层神经网络具有自组织特性。该架构通过选择强度参数作为阈值,保证了真实图像和合成图像的分割过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Handwritten Character Recognition Using Quantum Multilayer Neural Network (QMLNN) Architecture Quantum Cryptography Key Distribution Multi-Process Analysis and Portfolio Optimization Based on Quantum Mechanics (QM) Under Risk Management in ASEAN Exchanges A Generalized Parallel Quantum Inspired Evolutionary Algorithm Framework for Hard Subset Selection Problems Complex Action Methodology for Enterprise Systems (CAMES)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1