Convergence and stability results of Zhang neural network solving systems of time-varying nonlinear equations

Yunong Zhang, Yanyan Shi, Lin Xiao, Bingguo Mu
{"title":"Convergence and stability results of Zhang neural network solving systems of time-varying nonlinear equations","authors":"Yunong Zhang, Yanyan Shi, Lin Xiao, Bingguo Mu","doi":"10.1109/ICNC.2012.6234592","DOIUrl":null,"url":null,"abstract":"For solving systems of time-varying nonlinear equations, this paper generalizes a special kind of recurrent neural network by using a design method proposed by Zhang et al. Such a recurrent neural network (termed Zhang neural network, ZNN) is designed based on an indefinite error-function instead of a norm-based energy function. Theoretical analysis and results of convergence and stability are presented to show the desirable properties (e.g., large-scale exponential convergence) of ZNN via two different activation-function arrays for solving systems of time-varying nonlinear equations. Computer-simulation results substantiate further the theoretical analysis and efficacy of ZNN for solving systems of time-varying nonlinear equations.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

For solving systems of time-varying nonlinear equations, this paper generalizes a special kind of recurrent neural network by using a design method proposed by Zhang et al. Such a recurrent neural network (termed Zhang neural network, ZNN) is designed based on an indefinite error-function instead of a norm-based energy function. Theoretical analysis and results of convergence and stability are presented to show the desirable properties (e.g., large-scale exponential convergence) of ZNN via two different activation-function arrays for solving systems of time-varying nonlinear equations. Computer-simulation results substantiate further the theoretical analysis and efficacy of ZNN for solving systems of time-varying nonlinear equations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
张神经网络求解时变非线性方程组的收敛性和稳定性结果
为了求解时变非线性方程组,本文采用Zhang等人提出的设计方法,推广了一类特殊的递归神经网络。这种递归神经网络(称为张神经网络,ZNN)是基于不确定误差函数而不是基于范数的能量函数设计的。通过理论分析以及收敛性和稳定性的结果,证明了ZNN在求解时变非线性方程组时,采用两种不同的激活函数阵列所具有的理想性质(如大规模指数收敛性)。计算机仿真结果进一步证实了ZNN在求解时变非线性方程组中的理论分析和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The model about the affection regulation based on partial least regression in the Human-computer interaction HSAQEA based reliability redundancy optimization for complex system Static error correction of the sensor based on SVR Hybrid flexible neural tree for exchange rates forecasting Some comparison on whole-proteome phylogeny of large dsDNA viruses based on dynamical language approach and feature frequency profiles method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1