Bearing-Only Target Tracking Based on Big Bang – Big Crunch Algorithm

H. Genç, A. K. Hocaoglu
{"title":"Bearing-Only Target Tracking Based on Big Bang – Big Crunch Algorithm","authors":"H. Genç, A. K. Hocaoglu","doi":"10.1109/ICCGI.2008.53","DOIUrl":null,"url":null,"abstract":"Target tracking based on passive sensor data is of great importance in practical applications. In bearing only target tracking, the basic parameters defining the target motion is estimated through noise corrupted measurement data. Depending on the noise characteristics, the search space has many local minima. Obtaining the global minimum -that is the optimal solution - is an active area of research over the past few decades. In this work, a new optimization algorithm, namely Big Bang - Big Crunch algorithm is shown to fit this problem. The results are superior relative to classical genetic algorithm approach both in terms of speed and accuracy.","PeriodicalId":367280,"journal":{"name":"2008 The Third International Multi-Conference on Computing in the Global Information Technology (iccgi 2008)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 The Third International Multi-Conference on Computing in the Global Information Technology (iccgi 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCGI.2008.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Target tracking based on passive sensor data is of great importance in practical applications. In bearing only target tracking, the basic parameters defining the target motion is estimated through noise corrupted measurement data. Depending on the noise characteristics, the search space has many local minima. Obtaining the global minimum -that is the optimal solution - is an active area of research over the past few decades. In this work, a new optimization algorithm, namely Big Bang - Big Crunch algorithm is shown to fit this problem. The results are superior relative to classical genetic algorithm approach both in terms of speed and accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于大爆炸-大压缩算法的全方位目标跟踪
基于无源传感器数据的目标跟踪在实际应用中具有重要意义。在纯方位目标跟踪中,定义目标运动的基本参数是通过噪声干扰的测量数据估计出来的。根据噪声特性的不同,搜索空间存在多个局部极小值。在过去的几十年里,获得全局最小值(即最优解)是一个活跃的研究领域。本文提出了一种新的优化算法,即大爆炸-大紧缩算法。结果表明,该方法在速度和精度上都优于经典遗传算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge as a Service. An Online Scoring Engine Architecture Improved Minkowsky Metric for Image Region Partition Semi-autonomous Servers in Wireless Cellular Networks A Range Free Localization Algorithm Based on Restricted-Area for Wireless Sensor Networks Web Based Telematics Application for Robotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1