K. Rithesh, Lai-Kuan Wong, John See, W. Chan, K. Ng
{"title":"DECOVID-CT: Lightweight 3D CNN for COVID-19 Infection Prediction","authors":"K. Rithesh, Lai-Kuan Wong, John See, W. Chan, K. Ng","doi":"10.1109/ICCE-Taiwan55306.2022.9869238","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic has become a critical threat to global health and the economy since its first outbreak in 2019. The standard diagnosis for COVID-19, Reverse Transcription Polymerase Chain Reaction (RT-PCR) is time consuming, and has lower sensitivity compared to CT-scans. Therefore, CT-scans can be used as a complementary method, alongside RT-PCR tests for COVID-19 infection prediction. However, manually reviewing CT scans is time consuming. In this paper, we propose DECOVID-CT, a deep learning model based on 3D convolutional neural network (CNN) for the detection of COVID-19 infection with CT images. The model is trained and tested on the RICORD dataset, a multinational dataset, for higher robustness. Our model achieved an accuracy of 100%, for predicting COVID-19 positive images.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic has become a critical threat to global health and the economy since its first outbreak in 2019. The standard diagnosis for COVID-19, Reverse Transcription Polymerase Chain Reaction (RT-PCR) is time consuming, and has lower sensitivity compared to CT-scans. Therefore, CT-scans can be used as a complementary method, alongside RT-PCR tests for COVID-19 infection prediction. However, manually reviewing CT scans is time consuming. In this paper, we propose DECOVID-CT, a deep learning model based on 3D convolutional neural network (CNN) for the detection of COVID-19 infection with CT images. The model is trained and tested on the RICORD dataset, a multinational dataset, for higher robustness. Our model achieved an accuracy of 100%, for predicting COVID-19 positive images.