Binary classification trees for multi-class classification problems

Jin-Seon Lee, Il-Seok Oh
{"title":"Binary classification trees for multi-class classification problems","authors":"Jin-Seon Lee, Il-Seok Oh","doi":"10.1109/ICDAR.2003.1227766","DOIUrl":null,"url":null,"abstract":"This paper proposes a binary classification tree aiming atsolving multi-class classification problems using binaryclassifiers. The tree design is achieved in a way that aclass group is partitioned into two distinct subgroups at anode. The node adopts the class-modular scheme toimprove the binary classification capability. Thepartitioning is formulated as an optimization problemand a genetic algorithm is proposed to solve theoptimization problem. The binary classification tree iscompared to the conventional methods in terms ofclassification accuracy and timing efficiency.Experiments were performed with numeral recognitionand touching-numeral pair recognition.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

This paper proposes a binary classification tree aiming atsolving multi-class classification problems using binaryclassifiers. The tree design is achieved in a way that aclass group is partitioned into two distinct subgroups at anode. The node adopts the class-modular scheme toimprove the binary classification capability. Thepartitioning is formulated as an optimization problemand a genetic algorithm is proposed to solve theoptimization problem. The binary classification tree iscompared to the conventional methods in terms ofclassification accuracy and timing efficiency.Experiments were performed with numeral recognitionand touching-numeral pair recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二叉分类树用于多类分类问题
本文提出了一种利用二分类器解决多类分类问题的二分类树。树形设计的实现方式是将类组在阳极处划分为两个不同的子组。节点采用类模块化方案,提高了二值分类能力。将分区问题表述为一个优化问题,并提出了一种求解优化问题的遗传算法。二叉分类树在分类精度和时序效率方面与传统方法进行了比较。进行了数字识别和触摸-数字对识别实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1