Distance Function Selection for Multivariate Time-Series

Gleb Morgachev, A. Goncharov, V. Strijov
{"title":"Distance Function Selection for Multivariate Time-Series","authors":"Gleb Morgachev, A. Goncharov, V. Strijov","doi":"10.1109/IC-AIAI48757.2019.00021","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of optimal distance function selection to optimize the distance between multivariate time series. The dynamic time warping method of univariate time-series defines the warping path and uses its cost as the distance function. To find this path it uses various pairwise distances between time-series. This work examines a generalization of the time warping algorithm in case of multivariate time-series. The novelty of the paper is the comparison of various metrics between the multivariate values of time-series. The distances induced by L1, L2 norms and cosine distances are compared. This work also proposes the multivariate adaptation of the optimized time warping algorithm. The experiment runs subsequence search and clustering problems for multivariate time-series. The given cost functions are evaluated on three data sets: two data sets with labeled physical human activity data from wearable devices and coordinates and the pressing force in the process of writing characters.","PeriodicalId":374193,"journal":{"name":"2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-AIAI48757.2019.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the problem of optimal distance function selection to optimize the distance between multivariate time series. The dynamic time warping method of univariate time-series defines the warping path and uses its cost as the distance function. To find this path it uses various pairwise distances between time-series. This work examines a generalization of the time warping algorithm in case of multivariate time-series. The novelty of the paper is the comparison of various metrics between the multivariate values of time-series. The distances induced by L1, L2 norms and cosine distances are compared. This work also proposes the multivariate adaptation of the optimized time warping algorithm. The experiment runs subsequence search and clustering problems for multivariate time-series. The given cost functions are evaluated on three data sets: two data sets with labeled physical human activity data from wearable devices and coordinates and the pressing force in the process of writing characters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元时间序列的距离函数选择
研究了多变量时间序列间距离的最优距离函数选择问题。单变量时间序列的动态时间翘曲方法定义了翘曲路径,并以其代价作为距离函数。为了找到这条路径,它使用了不同时间序列之间的成对距离。本文研究了多元时间序列情况下时间翘曲算法的泛化。本文的新颖之处在于对时间序列的多变量值之间的各种度量进行比较。比较了L1范数、L2范数和余弦距离引起的距离。本文还提出了优化后的时间规整算法的多变量自适应。实验运行了多变量时间序列的子序列搜索和聚类问题。给定的成本函数在三个数据集上进行评估:两个数据集带有可穿戴设备和坐标标记的物理人类活动数据,以及书写字符过程中的压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface. The Test of Peter Kapitsa for Artificial Intelligence Application of Artificial Intelligence Methods in the Robocom Project A system for crowdsensing vibration in public transportation The Role of AI in the Transformation of Mobile Operators Domain Specific word Embedding Matrix for Training Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1