Automatic Classification of White Blood Cells Using Pre-Trained Deep Models

Oğuzhan Katar, Ilhan Firat Kilincer
{"title":"Automatic Classification of White Blood Cells Using Pre-Trained Deep Models","authors":"Oğuzhan Katar, Ilhan Firat Kilincer","doi":"10.35377/saucis...1196934","DOIUrl":null,"url":null,"abstract":"White blood cells (WBCs), which are part of the immune system, help our body fight infections and other diseases. Certain diseases can cause our body to produce fewer WBCs than it needs. For this reason, WBCs are of great importance in the field of medical imaging. Artificial intelligence-based computer systems can assist experts in the analysis of WBCs. In this study, an approach is proposed for the automatic classification of WBCs over five different classes using a pre-trained model. ResNet-50, VGG-19, and MobileNet-V3-Small pre-trained models were trained with ImageNet weights. In the training, validation, and testing processes of the models, a public dataset containing 16,633 images and not having an even class distribution was used. While the ResNet-50 model reached 98.79% accuracy, the VGG-19 model reached 98.19% accuracy, the MobileNet-V3-Small model reached the highest accuracy rate with 98.86%. When the predictions of the MobileNet-V3-Small model are examined, it is seen that it is not affected by class dominance and can classify even the least sampled class images in the dataset correctly. WBCs were classified with high accuracy using the proposed pre-trained deep learning models. Experts can effectively use the proposed approach in the process of analyzing WBCs.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1196934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

White blood cells (WBCs), which are part of the immune system, help our body fight infections and other diseases. Certain diseases can cause our body to produce fewer WBCs than it needs. For this reason, WBCs are of great importance in the field of medical imaging. Artificial intelligence-based computer systems can assist experts in the analysis of WBCs. In this study, an approach is proposed for the automatic classification of WBCs over five different classes using a pre-trained model. ResNet-50, VGG-19, and MobileNet-V3-Small pre-trained models were trained with ImageNet weights. In the training, validation, and testing processes of the models, a public dataset containing 16,633 images and not having an even class distribution was used. While the ResNet-50 model reached 98.79% accuracy, the VGG-19 model reached 98.19% accuracy, the MobileNet-V3-Small model reached the highest accuracy rate with 98.86%. When the predictions of the MobileNet-V3-Small model are examined, it is seen that it is not affected by class dominance and can classify even the least sampled class images in the dataset correctly. WBCs were classified with high accuracy using the proposed pre-trained deep learning models. Experts can effectively use the proposed approach in the process of analyzing WBCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用预训练深度模型的白细胞自动分类
白细胞(wbc)是免疫系统的一部分,帮助我们的身体对抗感染和其他疾病。某些疾病会导致我们的身体产生比需要的更少的白细胞。因此,白细胞在医学成像领域具有重要意义。基于人工智能的计算机系统可以协助专家分析白细胞。在本研究中,提出了一种使用预训练模型对五个不同类别的白细胞进行自动分类的方法。ResNet-50、VGG-19和MobileNet-V3-Small预训练模型使用ImageNet权值进行训练。在模型的训练、验证和测试过程中,使用了包含16,633张图像的公共数据集,并且没有均匀的类分布。ResNet-50模型的准确率为98.79%,VGG-19模型的准确率为98.19%,而MobileNet-V3-Small模型的准确率最高,为98.86%。当对MobileNet-V3-Small模型的预测进行检验时,可以看到它不受类别优势的影响,甚至可以正确分类数据集中采样最少的类别图像。使用所提出的预训练深度学习模型对wbc进行了高精度分类。专家可以在分析白细胞的过程中有效地使用所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Cardiovascular Disease Based on Voting Ensemble Model and SHAP Analysis A NOVEL ADDITIVE INTERNET OF THINGS (IoT) FEATURES AND CONVOLUTIONAL NEURAL NETWORK FOR CLASSIFICATION AND SOURCE IDENTIFICATION OF IoT DEVICES High-Capacity Multiplier Design Using Look Up Table Sequential and Correlated Image Hash Code Generation with Deep Reinforcement Learning Price Prediction Using Web Scraping and Machine Learning Algorithms in the Used Car Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1