Classification of EEG signals for brain-computer interface applications: Performance comparison

M. Z. Ilyas, P. Saad, M. I. Ahmad, A. Ghani
{"title":"Classification of EEG signals for brain-computer interface applications: Performance comparison","authors":"M. Z. Ilyas, P. Saad, M. I. Ahmad, A. Ghani","doi":"10.1109/ICORAS.2016.7872610","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison of Electroencephalogram (EEG) signals classification for Brain Computer-Interfaces (BCI). At present, it is a challenging task to extract the meaningful EEG signal patterns from a large volume of poor quality data and simultaneously with the presence of artifacts noises. Selection of the effective classification technique of the EEG signals at classification stage is very important to get the robust BCI system. Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) and Logistic Regression (LR) were evaluated in this paper. A BCI competition IV — Dataset 1 is used for testing the classifiers. It is shown that LR and SVM are the most efficient classifier with the highest accuracy of 73.03% and 68.97%.","PeriodicalId":393534,"journal":{"name":"2016 International Conference on Robotics, Automation and Sciences (ICORAS)","volume":" 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Robotics, Automation and Sciences (ICORAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORAS.2016.7872610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

This paper presents a comparison of Electroencephalogram (EEG) signals classification for Brain Computer-Interfaces (BCI). At present, it is a challenging task to extract the meaningful EEG signal patterns from a large volume of poor quality data and simultaneously with the presence of artifacts noises. Selection of the effective classification technique of the EEG signals at classification stage is very important to get the robust BCI system. Support Vector Machine (SVM), k-Nearest Neighbour (k-NN), Multi-Layer Perceptron Artificial Neural Network (MLP-ANN) and Logistic Regression (LR) were evaluated in this paper. A BCI competition IV — Dataset 1 is used for testing the classifiers. It is shown that LR and SVM are the most efficient classifier with the highest accuracy of 73.03% and 68.97%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑机接口应用的脑电信号分类:性能比较
本文对脑机接口(BCI)的脑电信号分类进行了比较。目前,如何从大量低质量的数据中提取有意义的脑电信号模式是一项具有挑战性的任务。在脑电信号分类阶段选择有效的分类技术是获得鲁棒脑机接口系统的关键。本文对支持向量机(SVM)、k-近邻(k-NN)、多层感知器人工神经网络(MLP-ANN)和逻辑回归(LR)进行了评价。BCI竞赛IV -数据集1用于测试分类器。结果表明,LR和SVM是最有效的分类器,准确率分别为73.03%和68.97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Removal of highlights in dichromatic reflection objects using segmentation and inpainting Validation study on cardiac output and index determination in impendence cardiography on postoperative cardiac patients in critical care Threading implementation on different hardware for travel time estimation purpose Potentiality of small wind turbines along highway in Malaysia Investigation of electrochemical characterization of agarose gel for model of human head correlated to lightning currents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1