Improved Differentially Private Euclidean Distance Approximation

N. Stausholm
{"title":"Improved Differentially Private Euclidean Distance Approximation","authors":"N. Stausholm","doi":"10.1145/3452021.3458328","DOIUrl":null,"url":null,"abstract":"This work shows how to privately and more accurately estimate Euclidean distance between pairs of vectors. Input vectors x and y are mapped to differentially private sketches $x'$ and $y'$, from which one can estimate the distance between x and y. Our estimator relies on the Sparser Johnson-Lindenstrauss constructions by Kane & Nelson (Journal of the ACM 2014), which for any 0<α,β<1/2 have optimal output dimension k=Θ(α^-2 łog(1/β)) and sparsity s=O(α^-1 łog(1/β)). We combine the constructions of Kane & Nelson with either the Laplace or the Gaussian mechanism from the differential privacy literature, depending on the privacy parameters $\\varepsilon$ and δ. We also suggest a differentially private version of Fast Johnson-Lindenstrauss Transform (FJLT) by Ailon & Chazelle (SIAM Journal of Computing 2009) which offers a tradeoff in speed for variance for certain parameters. We answer an open question by Kenthapadi et al. (Journal of Privacy and Confidentiality 2013) by analyzing the privacy and utility guarantees of an estimator for Euclidean distance, relying on Laplacian rather than Gaussian noise. We prove that the Laplace mechanism yields lower variance than the Gaussian mechanism whenever δ<β^O(1/α). Thus, our work poses an improvement over the work of Kenthapadi et al. by giving a more efficient estimator with lower variance for sufficiently small δ. Our sketch also achieves pure differential privacy as a neat side-effect of the Laplace mechanism rather than the approximate differential privacy guarantee of the Gaussian mechanism, which may not be sufficiently strong for some settings. Our main result is a special case of more general, technical results proving that one can generally construct unbiased estimators for Euclidean distance with a high level of utility even under the constraint of differential privacy. The bulk of our analysis is proving that the variance of the estimator does not suffer too much in the presence of differential privacy.","PeriodicalId":405398,"journal":{"name":"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452021.3458328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This work shows how to privately and more accurately estimate Euclidean distance between pairs of vectors. Input vectors x and y are mapped to differentially private sketches $x'$ and $y'$, from which one can estimate the distance between x and y. Our estimator relies on the Sparser Johnson-Lindenstrauss constructions by Kane & Nelson (Journal of the ACM 2014), which for any 0<α,β<1/2 have optimal output dimension k=Θ(α^-2 łog(1/β)) and sparsity s=O(α^-1 łog(1/β)). We combine the constructions of Kane & Nelson with either the Laplace or the Gaussian mechanism from the differential privacy literature, depending on the privacy parameters $\varepsilon$ and δ. We also suggest a differentially private version of Fast Johnson-Lindenstrauss Transform (FJLT) by Ailon & Chazelle (SIAM Journal of Computing 2009) which offers a tradeoff in speed for variance for certain parameters. We answer an open question by Kenthapadi et al. (Journal of Privacy and Confidentiality 2013) by analyzing the privacy and utility guarantees of an estimator for Euclidean distance, relying on Laplacian rather than Gaussian noise. We prove that the Laplace mechanism yields lower variance than the Gaussian mechanism whenever δ<β^O(1/α). Thus, our work poses an improvement over the work of Kenthapadi et al. by giving a more efficient estimator with lower variance for sufficiently small δ. Our sketch also achieves pure differential privacy as a neat side-effect of the Laplace mechanism rather than the approximate differential privacy guarantee of the Gaussian mechanism, which may not be sufficiently strong for some settings. Our main result is a special case of more general, technical results proving that one can generally construct unbiased estimators for Euclidean distance with a high level of utility even under the constraint of differential privacy. The bulk of our analysis is proving that the variance of the estimator does not suffer too much in the presence of differential privacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进差分私有欧几里得距离近似
这项工作展示了如何私下和更准确地估计向量对之间的欧几里得距离。输入向量x和y被映射到不同的私有草图$x'$和$y'$,从中可以估计x和y之间的距离。我们的估计器依赖于Kane和Nelson的Sparser Johnson-Lindenstrauss结构(ACM杂志2014),对于任何0<α,β<1/2具有最佳输出维k=Θ(α^-2 łog(1/β))和稀疏度s=O(α^-1 łog(1/β))。根据隐私参数$\varepsilon$和δ,我们将Kane & Nelson的构造与差分隐私文献中的拉普拉斯或高斯机制结合起来。我们还建议由Ailon和Chazelle (SIAM Journal of Computing 2009)设计的快速约翰逊-林登施特劳斯变换(FJLT)的不同私有版本,它为某些参数的方差提供了速度折衷。我们通过分析欧几里得距离估计器的隐私和效用保证来回答Kenthapadi等人(《隐私与机密杂志》,2013)提出的一个开放性问题,该估计器依赖于拉普拉斯噪声而不是高斯噪声。我们证明了当δ<β^O(1/α)时,拉普拉斯机制比高斯机制产生更小的方差。因此,我们的工作对Kenthapadi等人的工作进行了改进,为足够小的δ提供了更有效的估计器,方差更低。我们的草图还实现了纯差分隐私,作为拉普拉斯机制的一个简洁的副作用,而不是高斯机制的近似差分隐私保证,这在某些设置下可能不够强大。我们的主要结果是一个更一般的特殊情况,技术结果证明,即使在微分隐私的约束下,人们通常也可以构造具有高效用的欧几里得距离无偏估计。我们的大部分分析证明了在差分隐私存在的情况下,估计器的方差不会受到太大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover or Pack: New Upper and Lower Bounds for Massively Parallel Joins Data-Independent Space Partitionings for Summaries 2021 ACM PODS Alberto O. Mendelzon Test-of-Time Award Modern Lower Bound Techniques in Database Theory and Constraint Satisfaction Privacy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1