A Writer-Independent Approach for Offline Signature Verification using Deep Convolutional Neural Networks Features

Victor L. F. Souza, Adriano Oliveira, R. Sabourin
{"title":"A Writer-Independent Approach for Offline Signature Verification using Deep Convolutional Neural Networks Features","authors":"Victor L. F. Souza, Adriano Oliveira, R. Sabourin","doi":"10.1109/BRACIS.2018.00044","DOIUrl":null,"url":null,"abstract":"The use of features extracted using a deep convolutional neural network (CNN) combined with a writer-dependent (WD) SVM classifier resulted in significant improvement in performance of handwritten signature verification (HSV) when compared to the previous state-of-the-art methods. In this work it is investigated whether the use of these CNN features provide good results in a writer-independent (WI) HSV context, based on the dichotomy transformation combined with the use of an SVM writer-independent classifier. The experiments performed in the Brazilian and GPDS datasets show that (i) the proposed approach outperformed other WI-HSV methods from the literature, (ii) in the global threshold scenario, the proposed approach was able to outperform the writer-dependent method with CNN features in the Brazilian dataset, (iii) in an user threshold scenario, the results are similar to those obtained by the writer-dependent method with CNN features.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

The use of features extracted using a deep convolutional neural network (CNN) combined with a writer-dependent (WD) SVM classifier resulted in significant improvement in performance of handwritten signature verification (HSV) when compared to the previous state-of-the-art methods. In this work it is investigated whether the use of these CNN features provide good results in a writer-independent (WI) HSV context, based on the dichotomy transformation combined with the use of an SVM writer-independent classifier. The experiments performed in the Brazilian and GPDS datasets show that (i) the proposed approach outperformed other WI-HSV methods from the literature, (ii) in the global threshold scenario, the proposed approach was able to outperform the writer-dependent method with CNN features in the Brazilian dataset, (iii) in an user threshold scenario, the results are similar to those obtained by the writer-dependent method with CNN features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于深度卷积神经网络特征的离线签名验证方法
与之前最先进的方法相比,使用深度卷积神经网络(CNN)和依赖于作者(WD)的SVM分类器提取的特征,显著提高了手写签名验证(HSV)的性能。在这项工作中,研究是否使用这些CNN特征提供良好的结果在一个作者独立(WI) HSV上下文中,基于二分类变换结合使用SVM的作者独立分类器。在巴西和GPDS数据集上进行的实验表明:(i)本文方法优于文献中的其他WI-HSV方法;(ii)在全局阈值场景下,本文方法能够优于巴西数据集中具有CNN特征的作者依赖方法;(iii)在用户阈值场景下,本文方法与具有CNN特征的作者依赖方法获得的结果相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1