Deep generic features and SVM for facial expression recognition

Duc Minh Vo, T. Le
{"title":"Deep generic features and SVM for facial expression recognition","authors":"Duc Minh Vo, T. Le","doi":"10.1109/NICS.2016.7725672","DOIUrl":null,"url":null,"abstract":"Motivated by the newly recent trend in pattern recognition - convolutional neural network (CNN), we introduce a new fusion method based on CNN and support vector machines (SVM) for facial expression recognition problem. Our study puts the deep generic features from CNN and SVM together which is more efficient than CNN only. We investigate our proposed method on Cohn-Kanade dataset and achieve 96.04% in accuracy rate which is better than other state-of-the-art methods.","PeriodicalId":347057,"journal":{"name":"2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd National Foundation for Science and Technology Development Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS.2016.7725672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Motivated by the newly recent trend in pattern recognition - convolutional neural network (CNN), we introduce a new fusion method based on CNN and support vector machines (SVM) for facial expression recognition problem. Our study puts the deep generic features from CNN and SVM together which is more efficient than CNN only. We investigate our proposed method on Cohn-Kanade dataset and achieve 96.04% in accuracy rate which is better than other state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度通用特征和支持向量机的面部表情识别
基于模式识别领域的最新趋势——卷积神经网络(CNN),提出了一种基于卷积神经网络和支持向量机(SVM)的人脸表情识别新方法。我们的研究将CNN和SVM的深度通用特征结合在一起,比单独使用CNN更有效。在Cohn-Kanade数据集上对该方法进行了验证,准确率达到96.04%,优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deadlock prevention for resource allocation in model nVM-out-of-1PM Early containment of fast network worm malware AF relay-assisted MIMO/FSO/QAM systems in Gamma-Gamma fading channels Incremental verification of ω-regions on binary control flow graph for computer virus detection A reconfigurable heterogeneous multicore architecture for DDoS protection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1